首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意力机制的卷积神经网络机械钻速预测方法
引用本文:李博志,杨明合,许楷,蔡旭龙,张俊. 基于注意力机制的卷积神经网络机械钻速预测方法[J]. 科学技术与工程, 2024, 24(21): 8910-8916
作者姓名:李博志  杨明合  许楷  蔡旭龙  张俊
作者单位:油气钻采工程湖北省重点实验室,武汉 434000;中国石化西北油田分公司石油工程技术研究院
基金项目:中国石化科技攻关项目(P17049-3)
摘    要:传统机器学习方法在进行机械钻速预测时,受复杂特征提取和人为认知局限性的影响,难以满足现场预测精度要求。基于此,提出一种特征提取和回归预测相结合的机械钻速预测方法。首先,采用箱型图和独热编码对钻井实测数据进行预处理,清除异常数据并将离散特征连续化。其次,应用卷积神经网络(convolutional neural network, CNN)挖掘数据特征,并在网络中引入通道注意力机制(squeeze-and-excitation network, SENet),实现对CNN特征通道重要性程度的合理分配,建立SE-CNN机械钻速预测模型。最后,将SE-CNN模型与CNN模型进行对比分析,结果表明:SE-CNN模型的拟合优度提高了2.1%,平均绝对误差和均方根误差分别降低了1.1%和1.5%。SE-CNN模型具有较高的预测精度,可以用于现场机械钻速预测,为钻井提速提供科学参考。

关 键 词:机械钻速(ROP)  钻速预测  卷积神经网络  注意力机制
收稿时间:2023-08-01
修稿时间:2024-07-17

Prediction Method for ROP Based on Attention Mechanism of Convolutional Neural Network
Li Bozhi,Yang Minghe,Xu Kai,Cai Xulong,Zhang Jun. Prediction Method for ROP Based on Attention Mechanism of Convolutional Neural Network[J]. Science Technology and Engineering, 2024, 24(21): 8910-8916
Authors:Li Bozhi  Yang Minghe  Xu Kai  Cai Xulong  Zhang Jun
Affiliation:Key Laboratory of Petroleum Drilling and Production Engineering in Hubei Province, Wuhan 430100
Abstract:Traditional machine learning methods for mechanical ROP prediction are affected by complex feature extraction and imitations of human understanding, which make the prediction accuracy difficult to meet the on-site demand. Based on this, a new ROP prediction method combining feature extraction and regression prediction was proposed. Firstly, data in drilling engineering were pre-processed by box-plot method and one-hot encoding to eliminate abnormal data and to make discrete characteristic continuous. Secondly, convolutional neural network (CNN) was applied to extracting data features, and channel attention mechanism (squeeze-and-excitation network, SENet) was introduced to construct an SE-CNN model, which could adjust the importance of CNN feature channel. Finally, and SE-CNN model was compared with CNN model. The results shows that the goodness of fit of SE-CNN model is increased by 2.1%, the mean absolute error and the root mean squared error are decreased by 1.1% and 1.5%. SE-CNN model has a good prediction accuracy, SE-CNN model can forecast the ROP of drilling field and provides a scientific reference for increasing the ROP during drilling.
Keywords:rate of penetration (ROP)   ? ROP prediction   ?? convolutional neural network   ?? attention mechanism
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号