首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pathway for high-energy density LiMnFePO4 cathodes
Institution:1. Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China;2. Shenzhen Eigen–Equation Graphene Technology Co. Ltd., Shenzhen, 518000, PR China
Abstract:Polyanion cathodes are credited for its thermal stability and better safety, no matter in lithium ion batteries or sodium ion batteries. Polyanion oxides with phosphate groups came to the public's attention in 1997, and the representative material is LiFePO4, which has been widely applied and plays a huge role in the field of powder batteries and energy storage system. However, owing to the low lithiation potentials and storage sites, the energy densities of polyanion cathodes have been restricted, resulting of low-endurance and limited application scenarios. Accordingly, here, we use cheap and environmental friendly raw materials as precursors to synthesis high energy density LiMn0.6Fe0.4PO4@C cathode by a simple spray-drying and high temperature calcination process. The self-designed liquid polyacrylonitrile (LPAN) is added for the intention of nanoparticle coating, conductive network construction and particle granulation. The low-cost and carbon-coated LiMn0.6Fe0.4PO4 cathode exhibits excellent reversible capacity, low electrochemical polarization and excellent rate capacity, which maintains 93.5% capacity retention after cycling 1000 times at 5C. The work introduces a new avenue to fabricate olivine structure cathodes with outstanding electrochemical performance for the high energy density lithium ion batteries.
Keywords:Polyanion cathode  Liquid polyacrylonitrile  Cost effective  High energy density  High stability
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号