首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于小波系数方差的语音端点检测方法
引用本文:赵高峰,张雪英,侯雪梅. 一种基于小波系数方差的语音端点检测方法[J]. 太原理工大学学报, 2006, 37(5): 511-513
作者姓名:赵高峰  张雪英  侯雪梅
作者单位:太原理工大学,信息工程学院,山西,太原,030024
基金项目:国家自然科学基金;山西省自然科学基金
摘    要:首先分析讨论了小波变换的原理,在此基础上提出了一种利用小波系数方差识别含噪语音信号中静音与语音的新算法。算法首先对含噪语音进行小波分解,观察各层小波系数的统计特性,提取它们的方差作为检测特征,从而进行语音端点检测。对该算法进行了仿真实验,并与传统的基于能量与过零率的端点检测算法进行了比较。实验结果表明:该算法在低信噪比条件下也能够有效分割语音。

关 键 词:端点检测  小波变换  参数方差
文章编号:1007-9432(2006)05-0511-03
收稿时间:2005-10-27
修稿时间:2005-10-27

A Speech Endpoint Detection Algorithm Based on the Variance of the Wavelet Coefficients
ZHAO Gao-feng,ZHANG Xue-ying,HOU Xue-mei. A Speech Endpoint Detection Algorithm Based on the Variance of the Wavelet Coefficients[J]. Journal of Taiyuan University of Technology, 2006, 37(5): 511-513
Authors:ZHAO Gao-feng  ZHANG Xue-ying  HOU Xue-mei
Affiliation:College of Information Engineering of TUT , Tai yuan 030024, China
Abstract:Speech endpoint detection is a key technology for speech recognition.It is difficult to exactly detect endpoint under low SNR,especially in silence segment or before pronouncing or after pronouncing.This paper first discussed the principle of wavelet transform,based on which,a new speech segmentation algorithm using the variance of the wavelet coefficients was proposed.Speech signal with noise was decomposed by wavelet to investigate the statistic characteristics of wavelet coefficient and different characters were obtained to detect speech signal.Simulations were made under different signal-to-noise ratios and were compared with traditional speech endpoint detection algorithm based on energy and zero-crossing rates.The results show that this method is efficient to segment noisy speech even at a low signal-to-noise ratio.
Keywords:speech endpoint detection  wavelet transform  parameter variance
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号