首页 | 本学科首页   官方微博 | 高级检索  
     

集中式多传感器模糊联合概率数据互联算法
引用本文:张晶炜,何友,熊伟. 集中式多传感器模糊联合概率数据互联算法[J]. 清华大学学报(自然科学版)网络.预览, 2007, 0(7)
作者姓名:张晶炜  何友  熊伟
作者单位:海军航空工程学院信息融合技术研究所 烟台264001
基金项目:国家自然科学基金资助项目(60172033),全国优秀博士论文作者专项资金资助项目(200036)
摘    要:为解决集中式多传感器系统中多目标跟踪问题,提出了集中式多传感器模糊联合概率数据互联算法。该算法应用模糊数学的方法计算测量点迹与航迹测量预测之间的模糊综合相似度,运用阈值判别及经验概率法则给出模糊联合互联概率的计算方法,提出了集中式多传感器模糊联合概率数据互联算法的状态估计模型。对该算法与已有集中式多传感器联合概率数据互联算法进行仿真比较,仿真结果显示该算法的跟踪精度较后者提高了43.7%,同时有效地降低了周期耗时,综合性能更优越。

关 键 词:雷达  多传感器  多目标跟踪  数据互联

Centralized multisensor fuzzy joint probabilistic data association algorithm
ZHANG Jingwei,HE You,XIONG Wei. Centralized multisensor fuzzy joint probabilistic data association algorithm[J]. , 2007, 0(7)
Authors:ZHANG Jingwei  HE You  XIONG Wei
Abstract:A centralized multisensor fuzzy joint probabilistic data association(CMS-FJPDA)algorithm was developed for multitarget tracking with a centralized multisensor system.The similarty between measurement and prediction is first calculated using fuzzy mathematics.Then,the fuzzy association probability is calculated using the threshold distinction principle and the experiential probability principle.Finally,a multisensor fuzzy joint probabilistic data association algorithm is used to combine the results.Simulations are used to compare the algorithm performance with that of the centralized multisensor joint probabilistic data association(MSJPDA)method.The results show that the CMS-FJPDA algorithm tracking precision is at 43.7% better than that of the MSJPDA algorithm,while the computational burden of the CMS-FJPDA algorithm is much less than that of the MSJPDA algorithm.
Keywords:radar  multisensor  multitarget tracking  data association
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号