首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN-LSTM的综合能源系统负荷预测模型
引用本文:张文栋,刘子琨,梁涛,刘伟. 基于CNN-LSTM的综合能源系统负荷预测模型[J]. 重庆邮电大学学报(自然科学版), 2023, 35(2): 254-262
作者姓名:张文栋  刘子琨  梁涛  刘伟
作者单位:五凌电力有限公司, 长沙 410000;山东电力工程咨询院有限公司, 济南 250000
基金项目:五凌电力有限公司综合智慧能源业务及数字化建设发展规划项目(320115JX0120210002)
摘    要:负荷的准确预测是综合能源系统设计、运行、调度和管理的前提。现有的负荷预测模型中大都考虑了气象、日期因素,却没有考虑系统中电、冷、热负荷间的相关性,这会对模型的预测精度造成影响。使用了科普拉理论对系统中3种负荷之间的相关性进行分析。从分析结果看,它们之间具有强相关的关系。基于上述分析结果,提出了一种基于深度学习的智慧综合能源系统负荷预测模型,该模型使用卷积神经网络(convolutional neural network,CNN)来提取系统中电、冷、热负荷间的耦合特性相关的特征量。将得到的特征量转换为时间序列后,输入到长短期记忆(long short-term memory,LSTM)网络中进行负荷预测。实验显示,所提出的CNN-LSTM组合模型的预测精度更为精准,可为综合能源系统的负荷预测提供参考。

关 键 词:综合能源系统  卷积神经网络(CNN)  长短期记忆网络(LSTM)  负荷预测
收稿时间:2021-12-28
修稿时间:2023-02-17

Load prediction model of integrated energy system based on CNN-LSTM
ZHANG Wendong,LIU Zikun,LIANG Tao,LIU Wei. Load prediction model of integrated energy system based on CNN-LSTM[J]. Journal of Chongqing University of Posts and Telecommunications, 2023, 35(2): 254-262
Authors:ZHANG Wendong  LIU Zikun  LIANG Tao  LIU Wei
Affiliation:Wuling Power Corporation Limited, Changsha 410000, P.R. China;Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250000, P.R. China
Abstract:Accurate load prediction is the premise of design, operation, scheduling, and management of integrated energy system. Most existing load forecasting models consider meteorological and date factors, but do not consider the correlation between electricity, cold and heat loads in system, which will affect the prediction accuracy of the model. In this paper, Copula theory is used to analyze the correlation between three kinds of loads in the system. From the analysis results, there is a strong correlation between the three loads. To improve the prediction accuracy of the model, this paper proposes a load prediction model of integrated energy system based on deep learning. Firstly, the model uses convolutional neural network (CNN) to extract the feature quantities related to the coupling characteristics of electric, cold, and hot loads in the system. After characteristic values are converted into time series, these series were input into long short-term memory (LSTM) network for load prediction. Experimental results show that the prediction accuracy of CNN-LSTM combined model proposed in this paper is more accurate, which can provide reference for the load prediction of the system.
Keywords:smart integrated energy system  convolutional neural network (CNN)  long short-term memory (LSTM)  load prediction
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号