首页 | 本学科首页   官方微博 | 高级检索  
     

分数阶Laplace方程组的山路解
引用本文:李青,魏公明. 分数阶Laplace方程组的山路解[J]. 上海理工大学学报, 2016, 38(3): 235-244
作者姓名:李青  魏公明
作者单位:上海理工大学理学院, 上海 200093;上海理工大学理学院, 上海 200093
基金项目:沪江基金资助项目(B14005)
摘    要:对一类非线性分数阶Laplace方程组Dirichlet问题非平凡解以及正解的存在性分别进行了研究.针对非线性分数阶Laplace方程组在满足Dirichlet边值条件下所具有的特征,通过定义能量空间,然后在该空间中利用Sobolev嵌入定理、控制收敛定理、Brezis-Leb引理,证明分数阶方程组的能量泛函满足Palais-Smale紧性条件,最后利用分数阶Sobolev空间中的山路引理,得出方程组存在非平凡临界点,也即得出这类非线性分数阶Laplace方程组Dirichlet问题存在非平凡解的结论.此外,还利用Nehari流形、极小能量法,通过比较能量法得出一类耦合的非线性分数阶Laplace方程组Dirichlet问题存在正解需要满足的条件,进而得出这类分数阶Laplace方程组存在正解的结论.

关 键 词:分数阶Laplace算子  山路引理  Palais-Smale条件  极小能量解
收稿时间:2015-01-08

Mountain Pass Solutions for the System of Equations Driven by the Fractional Laplace Operator
LI Qing and WEI Gongming. Mountain Pass Solutions for the System of Equations Driven by the Fractional Laplace Operator[J]. Journal of University of Shanghai For Science and Technology, 2016, 38(3): 235-244
Authors:LI Qing and WEI Gongming
Affiliation:College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China;College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:The existence of nontrivial solutions and positive solutions for fractional Laplace systems with Dirichlet boundary conditions was investigated.According to the features when the Dirichlet boundary conditions of fractional Laplace systems are satisfied and based on the mountain pass theorem, embedding theorem, dominated convergence theorem and Brezis-Leb lemma in Sobolev space, the Palais-Smale compactness conditions of the energy functional were proved.Then the existence of nontrivial solutions for fractional Laplace systems with Dirichlet boundary conditions was concluded.Moreover, The Nehari manifold and minimal energy method were used to prove the existence of positive solutions for fractional Laplace systems with Dirichlet boundary conditions.
Keywords:fractional Laplace operator  mountain pass theorem  Palais-Smale condition  least energy solution
本文献已被 CNKI 等数据库收录!
点击此处可从《上海理工大学学报》浏览原始摘要信息
点击此处可从《上海理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号