首页 | 本学科首页   官方微博 | 高级检索  
     

对称DLDA及其在人脸识别中的应用
引用本文:何振学. 对称DLDA及其在人脸识别中的应用[J]. 科学技术与工程, 2013, 13(21): 6294-6298
作者姓名:何振学
作者单位:西北师范大学
基金项目:甘肃省自然科学基金资助项目(0803RJZA109);甘肃省科技攻关项目(2GS035-A052-011)
摘    要:针对直接线性鉴别分析(DLDA)没有有效利用人脸对称性特征,及其在人脸识别中训练样本不足的问题,依据人脸较为明显的镜像对称性,结合该特性在直接线性鉴别分析的基础上提出对称直接线性鉴别分析方法。采用镜像变换得到奇对称样本和偶对称样本,再分别提取各奇偶对称样本特征分量,最后采用最小欧氏距离进行分类。通过在ORL和YALE人脸数据库上的实验证明,该算法不仅有效利用了镜像样本,扩大了训练样本容量;而且取得了比直接线性鉴别分析更好的识别性能。

关 键 词:人脸识别  特征提取  镜像对称性  直接线性鉴别分析  对称直接线性鉴别分析
收稿时间:2013-03-27
修稿时间:2013-04-25

Symmetrical DLDA and Its Application to Face Recognition
hezhenxue. Symmetrical DLDA and Its Application to Face Recognition[J]. Science Technology and Engineering, 2013, 13(21): 6294-6298
Authors:hezhenxue
Affiliation:(College of Computer Science & Engineering,Northwest Normal University,Lanzhou 730070,P.R.China)
Abstract:Aiming at the problem that Direct Linear Discriminant Analysis (DLDA) does not effective use the feature of face symmetry, and face recognition are generally lack of training samples. According to the obvious feature of face symmetry, this paper proposes a face recognition method based on DLDA, the Symmetrical DLDA. The odd symmetry samples and the even symmetry samples are received by mirror transforming. After that, odd/even symmetrical principal components are respectively extracted. Lastly, Minimum Euclidean Distance is employed to classify the extracted features .The method is evaluated on the ORL and YALE face image database. Experimental results show the proposed method not only effective use of mirror samples, enlarges the number of training samples, but also achieves better performance than DLDA.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号