首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的毫米波图像目标检测
引用本文:程秋菊,陈国平,王璐,管春. 基于卷积神经网络的毫米波图像目标检测[J]. 科学技术与工程, 2020, 20(13): 5224-5229
作者姓名:程秋菊  陈国平  王璐  管春
作者单位:重庆邮电大学光电工程学院,重庆400065;重庆邮电大学光电工程学院,重庆400065;重庆邮电大学光电工程学院,重庆400065;重庆邮电大学光电工程学院,重庆400065
基金项目:基于卷积神经网络的毫米波雷达回波信号分类与识别研究
摘    要:在公共安全检查领域中,研究毫米波图像目标检测的快速性和精准性的方法具有非常重要的实际应用价值。提出了基于Faster R-CNN深度学习的方法检测隐藏在人体上的危险物品。该方法将区域建议网络(region proposal network,RPN)和VGG16训练卷积神经网络模型相结合,接着通过在线难例挖掘(online hard example mining,OHEM)技术优化训练所提出的网络模型,从而构建了面向毫米波图像目标检测的深度卷积神经网络。实验结果证明所提的方法能高效地检测毫米波图像中的危险物品,并且目标检测的平均精度高达约94.66%,检测速度约为6帧/s,同时对毫米波安检系统的智能化发展有着极其重要的参考价值。

关 键 词:毫米波图像  FasterR-CNN  VGG16  深度卷积神经网络  目标检测
收稿时间:2019-08-09
修稿时间:2019-12-27

Millimeter Wave Image Object Detection Based on Convolutional Neural Network
Cheng Qiuju,Chen Guoping,Wang Lu,Guan Chun. Millimeter Wave Image Object Detection Based on Convolutional Neural Network[J]. Science Technology and Engineering, 2020, 20(13): 5224-5229
Authors:Cheng Qiuju  Chen Guoping  Wang Lu  Guan Chun
Affiliation:Chongqing University of Post and Telecommunications
Abstract:In In the field of public security inspection, the method of studying the rapidity and accuracy of millimeter-wave image object detection has very important practical application value. It proposes a method based on Faster R-CNN deep learning to detect dangerous objects hidden in the human body. The method combines the Region Proposal Network (RPN) with the VGG16 training convolutional neural network model. Then, through the Online Hard Example Mining (OHEM) technology, the network model proposed by the training is optimized. Thus, a deep convolutional neural network for millimeter wave image object detection is constructed. The results show that the proposed method can efficiently detect dangerous objects in millimeter wave images, and the average accuracy of object detection is about 94.66%, and the detection speed is about 6fps. At the same time, it has extremely important reference value for the intelligent development of millimeter wave security inspection system.
Keywords:millimeter wave image faster r-cnn vgg16 deep convolutional neural network object detection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号