首页 | 本学科首页   官方微博 | 高级检索  
     

基于简化脉冲耦合神经网络的噪声人脸识别
引用本文:袁刚,周冬明,聂仁灿. 基于简化脉冲耦合神经网络的噪声人脸识别[J]. 云南大学学报(自然科学版), 2015, 37(5): 687-694. DOI: 10.7540/j.ynu.20150056
作者姓名:袁刚  周冬明  聂仁灿
作者单位:1.云南大学 信息学院 通信工程系, 云南 昆明 650091
摘    要:利用简化脉冲耦合神经网络(S-PCNN),提出一种处理椒盐噪声污染的人脸识别新方法.首先采用S-PCNN的相似群神经元同步发放脉冲特性对原图像进行噪声检测,然后结合数学形态学实现对噪声点的消除,最后使用S-PCNN的时间序列(OTS)和欧氏距离进行人脸识别.通过计算机仿真实验表明所提算法是有效的.

关 键 词:S-PCNN   椒盐噪声   数学形态学   振荡时间序列   人脸识别
收稿时间:2015-01-23

Noise face recognition based on Simplified Pulse Coupled Neural Network
YUAN Gang,ZHOU Dong-ming,NIE Ren-can. Noise face recognition based on Simplified Pulse Coupled Neural Network[J]. Journal of Yunnan University(Natural Sciences), 2015, 37(5): 687-694. DOI: 10.7540/j.ynu.20150056
Authors:YUAN Gang  ZHOU Dong-ming  NIE Ren-can
Affiliation:1.Department of Communication Engineering, School of Information Science and Engineering, Yunnan University, Kunming 650091, China
Abstract:A face recognition method for dealing with salt and pepper noise pollution using Simplified Pulse Coupled Neural Network (S-PCNN) was proposed.Firstly the paper uses similar group of S-PCNN neurons issuing synchronous pulses to detect noise of the original image,and then combines with mathematical morphology to achieve elimination noise point,finally adopts the oscillation time sequences (OTS) of S-PCNN and Euclidean distance to process face recognition.Computer simulation results show that the proposed algorithm is effective.
Keywords:Simplified Pulse Coupled Neural Network(S-PCNN)    salt and pepper noise    mathematical morphology    oscillation time sequence    face recognition   
本文献已被 CNKI 等数据库收录!
点击此处可从《云南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《云南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号