首页 | 本学科首页   官方微博 | 高级检索  
     

直接甲醇燃料电池的数学建模与神经网络辨识建模
引用本文:苗青,曹广益,朱新坚. 直接甲醇燃料电池的数学建模与神经网络辨识建模[J]. 上海交通大学学报, 2005, 0(Z1)
作者姓名:苗青  曹广益  朱新坚
作者单位:[1]上海交通大学自动化系燃料电池研究所 [2]上海
基金项目:国家高技术研究发展计划(863)项目(2003AA517020)
摘    要:针对直接甲醇燃料电池(DMFC)非线性系统建模问题,提出了两种不同的建模方法(1)采用电化学、流体动力学、热力学等理论,建立了DMFC电池性能数学模型;(2)利用改进型BP神经网络建立DMFC电池性能辨识模型.结合DMFC实验数据进行仿真测试,结果表明这两种建模方法均合理、有效,建立的模型精度较高,从而为设计DMFC在线控制器奠定了基础.

关 键 词:直接甲醇燃料电池  数学模型  电化学  流体动力学  辨识模型

Direct Methanol Fuel Cell Modeling Based on Mathematical Theory and Neural Networks Identification
MIAO Qing,CAO Guang-yi,ZHU Xin-jian. Direct Methanol Fuel Cell Modeling Based on Mathematical Theory and Neural Networks Identification[J]. Journal of Shanghai Jiaotong University, 2005, 0(Z1)
Authors:MIAO Qing  CAO Guang-yi  ZHU Xin-jian
Abstract:Two different modeling methods were proposed for solving the modeling problem of direct methanol fuel cell(DMFC) nonlinear system. One is a mathematical model of DMFC performance, which is established by using theories of electrochemistry, hydrokinetics and thermodynamics. The other is an identification model of DMFC performance, which is established by the novel BP algorithm of neural networks. The simulation results show that the two modeling methods are correct, effective and the models have better accuracy. Moreover, the mathematical and neural networks modeling make it possible to design on-line controller of DMFC.
Keywords:direct methanol fuel cell (DMFC)  mathematical model  electrochemistry  hydrokinetic  identification model
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号