首页 | 本学科首页   官方微博 | 高级检索  
     

一种结合边缘区域和互相关的图像配准方法
引用本文:陈亮,周孟哲,陈禾. 一种结合边缘区域和互相关的图像配准方法[J]. 北京理工大学学报, 2016, 36(3): 320-325. DOI: 10.15918/j.tbit1001-0645.2016.03.018
作者姓名:陈亮  周孟哲  陈禾
作者单位:北京理工大学信息与电子学院,北京,100081;北京理工大学信息与电子学院,北京,100081;北京理工大学信息与电子学院,北京,100081
摘    要:针对灰度差异较大的红外图像和可见光图像,提出了一种基于互相关系数和Canny边缘区域相结合的配准算法,以改进的互相关系数作为相似性度量函数,只提取图像的边缘及其附近的区域,剔除其他互相关性低的部分,采用粒子群优化算法搜索使得度量函数达到最值时的空间变换参数的值.实验结果表明,克服了红外和可见光图像相关性较差的缺点,能够避免由灰度差异带来的多源图像配准不精确的情况,可以实现红外和可见光的配准,并且能够保证误差在较小的范围之内. 

关 键 词:互相关系数  边缘区域  边缘提取  度量函数  图像配准
收稿时间:2013-11-25

A Method for Image Registration Combined by Edge Region and Cross Correlation
CHEN Liang,ZHOU Meng-zhe and CHEN He. A Method for Image Registration Combined by Edge Region and Cross Correlation[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2016, 36(3): 320-325. DOI: 10.15918/j.tbit1001-0645.2016.03.018
Authors:CHEN Liang  ZHOU Meng-zhe  CHEN He
Affiliation:School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
Abstract:A new algorithm aimed at infrared and visible image registration based on cross-correlation coefficient and Canny edge region was presented:regarded the improved Cross-correlation coefficient as the similarity function, extracted the edge region and its nearby area, removed other regions with low correlation, used the particle swarm optimization(PSO) to seek. It shows that this algorithm can overcome the shortcomings which infrared and visible images are poor correlated and avoid the bad matching between multi-sensor images.Multi-sensor image registration could be achieved and small error is guaranteed.
Keywords:cross-correlation coefficient  edge region  edge extraction  similarity function  image registration
本文献已被 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号