首页 | 本学科首页   官方微博 | 高级检索  
     

基于隐Markov模型的图像方位识别
引用本文:于涛,韩清凯,孙伟,闻邦椿. 基于隐Markov模型的图像方位识别[J]. 东北大学学报(自然科学版), 2006, 27(3): 304-307. DOI: -
作者姓名:于涛  韩清凯  孙伟  闻邦椿
作者单位:东北大学,机械工程与自动化学院,辽宁,沈阳,110004;东北大学,机械工程与自动化学院,辽宁,沈阳,110004;东北大学,机械工程与自动化学院,辽宁,沈阳,110004;东北大学,机械工程与自动化学院,辽宁,沈阳,110004
基金项目:中国科学院资助项目,吉林省沈阳市科技攻关项目
摘    要:提出一种基于隐Markov模型(Hidden Markov Model,HMM)的图像方位识别方法.将待识别的目标图像进行分割,对子图像进行奇异值分解,提取奇异值向量形成观测序列,即图像奇异值向量作为HMM的观测向量.确定HMM参数并计算其最大似然概率,按待识别图像最大似然概率对应所属的聚类进行识别.实验结果表明,3类共150幅目标图像的识别率达到了85%.

关 键 词:图像方位识别  奇异值向量  隐Markov模型(HMM)  聚类分析
文章编号:1005-3026(2006)03-0304-04
收稿时间:2005-04-25
修稿时间:2005-04-25

Image Orientation Recognition Based on Hidden Markov Model
YU Tao,HAN Qing-kai,SUN Wei,WEN Bang-chun. Image Orientation Recognition Based on Hidden Markov Model[J]. Journal of Northeastern University(Natural Science), 2006, 27(3): 304-307. DOI: -
Authors:YU Tao  HAN Qing-kai  SUN Wei  WEN Bang-chun
Affiliation:(1) School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
Abstract:A method of image orientation recognition is put forward,based on HMM(Hidden Markov Model).Segmenting the target image to recognize into sub-images,a singular value decomposition is conducted for them to extract singular value vectors so as to form an observation sequence,i.e.,the singular value vectors of the image are taken as HMM observation vectors.Then,the HMM parameters are determined with their maximum likelihood calculated,and the images are recognized according to the clustering which the maximum likelihood of an image to recognize corresponds to.Test results showed that the recognition rate of 150 target images in 3 clusters is up to 85%.
Keywords:image orientation recognition  singular value vector  Hidden Markov Model(HMM)  clustering analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号