首页 | 本学科首页   官方微博 | 高级检索  
     

基于交叉协方差子空间估计的前景检测方法
引用本文:秦明,陆耀. 基于交叉协方差子空间估计的前景检测方法[J]. 北京理工大学学报, 2018, 38(1): 91-95. DOI: 10.15918/j.tbit1001-0645.2018.01.016
作者姓名:秦明  陆耀
作者单位:北京理工大学计算机学院,北京,100081;北京理工大学计算机学院,北京,100081
摘    要:提出了一种基于交叉协方差子空间估计的背景建模方法,用以实现复杂场景下的前景检测.基于交叉协方差的主成分分析方法可以保留更多的图像协方差信息,因此非常适合用于背景模型的构建.本文首次将基于交叉协方差的二维主成分分析方法引入至背景建模领域,并且提出了相应的增量更新算法来实现背景的自适应估计.此外,本文考虑了前景的稀疏性及连续性,并将其合理应用于前景检测过程中.定量实验和定性分析表明,本文提出的方法具有较强的鲁棒性,可以实现复杂场景下的准确背景建模. 

关 键 词:背景建模  交叉协方差子空间估计  复杂场景
收稿时间:2016-03-18

A Foreground Detection Method Based on Cross-Covariance Subspace Estimation
QIN Ming and LU Yao. A Foreground Detection Method Based on Cross-Covariance Subspace Estimation[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2018, 38(1): 91-95. DOI: 10.15918/j.tbit1001-0645.2018.01.016
Authors:QIN Ming and LU Yao
Affiliation:School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:In this paper, a novel background modeling method was proposed based on cross-covariance subspace estimation to detect foreground in complex scenarios. The cross-covariance based 2DPCA (2 dimensional principal component analysis) method can preserve more image covariance information, which makes it suitable for background modeling. Therefore the cross-covariance based 2DPCA method was introduced into background modeling field and a correlative incremental algorithm was proposed for adaptively estimating background. Considering the sparsity and the continuity of the foreground, the method was used in foreground detecting accurately. Quantitative experimental and qualitative analysis results show that the proposed method can estimate the background information accurately and robustly in complex scenarios.
Keywords:background modeling  cross-covariance based subspace estimation  complex scenarios
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号