首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improved ethanol, acetone and H2 sensing performances of micro-sensors based on loose ZnO nanofibers
Authors:XiuZhi Wang
Institution:1. College of Textiles and Clothing Engineering, Dezhou University, Dezhou, 253000, China
Abstract:Both one-dimensional nanostructures and porous nanostructures are benefit to the sensing enhancement of semiconducting functional materials. The present paper shows an effective route to combining the advantages of these two nanostructures for a novel type of ZnO nanomaterials. Basically, a pore-forming material is employed in an electrospinning method, and the products are characterized by X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The obtained materials are loose ZnO nanofibers, which own both porous and one-dimensional nanostructures. Micro-sensors are fabricated by sputtering and etching techniques, and the as-prepared nanofibers are used as the functional materials in them. The sensors show improved sensing properties both in sensitivity and response-speeds. The sensitivity is enhanced from 4 to 8 and the response time is shortened from 14 to 10 s when the sensors are exposed to 100 ??L/L ethanol at 260°C. Similar results are also observed in acetone and H2 sensing tests. These enhancements are based on the one-dimensional and porous nanostructures of the nanofibers.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号