首页 | 本学科首页   官方微博 | 高级检索  
     

基于语义分割注意力与可见区域预测的行人检测方法
引用本文:王璐,王帅,张国峰,徐礼胜. 基于语义分割注意力与可见区域预测的行人检测方法[J]. 东北大学学报(自然科学版), 2021, 42(9): 1261-1267. DOI: 10.12068/j.issn.1005-3026.2021.09.007
作者姓名:王璐  王帅  张国峰  徐礼胜
作者单位:(1. 东北大学 计算机科学与工程学院, 辽宁 沈阳110169; 2. 东北大学 医学与生物信息工程学院, 辽宁 沈阳110169; 3. 沈阳东软智能医疗科技研究院有限公司, 辽宁 沈阳110167)
基金项目:中央高校基本科研业务费专项资金资助项目(N181604006); 辽宁省自然科学基金资助项目(20170540312); 国家自然科学基金资助项目(61773110); 沈阳市科学技术计划基金资助项目(20-201-4-10).
摘    要:
为改善图像中遮挡和小尺寸行人的检测精度,提出一种基于语义分割注意力和可见区域预测的行人检测方法.具体地,在SSD(single shot multi-box detector)目标检测网络的基础上,首先优化SSD的超参数设置,使其更适于行人检测;然后在主干网络中引入基于语义分割的注意力分支来增强行人检测特征的表达能力;...

关 键 词:行人检测  卷积神经网络  语义分割注意力  行人可见区域预测  多任务网络
修稿时间:2021-01-04

Pedestrian Detection Based on Semantic Segmentation Attention and Visible Region Prediction
WANG Lu,WANG Shuai,ZHANG Guo-feng,XU Li-sheng. Pedestrian Detection Based on Semantic Segmentation Attention and Visible Region Prediction[J]. Journal of Northeastern University(Natural Science), 2021, 42(9): 1261-1267. DOI: 10.12068/j.issn.1005-3026.2021.09.007
Authors:WANG Lu  WANG Shuai  ZHANG Guo-feng  XU Li-sheng
Affiliation:1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China; 2. School of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; 3. Neusoft Research of Intelligent Healthcare Technology, Co., Ltd., Shenyang 110167, China.
Abstract:
To improve the detection performance on occluded and small pedestrians in images, a pedestrian detection method based on semantic segmentation attention and visible region prediction was proposed. Specifically, based on the single shot multi-box detector(SSD)object detection network, the hyperparameter setting of the SSD was firstly optimized to make it more suitable for pedestrian detection. Then the semantic segmentation attention branch was introduced into the network to enhance the pedestrian detection features learned by the network. Finally, a detection prediction module which can simultaneously detect the full bodies and visible regions of pedestrians was developed. This module has the advantage of leveraging the features learned from visible regions to guide the learning of the full-body detection features, hence improving the overall detection accuracy. The experiment carried out on the Caltech pedestrian detection benchmark shows that the log-average miss rate of the proposed method is 5.5%, which is competitive compared with existing pedestrian detection approaches.
Keywords:pedestrian detection   convolutional neural network   semantic segmentation attention(SSA)   pedestrian visible region detection   multi-task network,
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号