首页 | 本学科首页   官方微博 | 高级检索  
     

介电泳效应的液滴聚结过程与分布
引用本文:胡晟,陈悦江,吕晓永,吴东旭. 介电泳效应的液滴聚结过程与分布[J]. 东北大学学报(自然科学版), 2021, 42(10): 1386-1391. DOI: 10.12068/j.issn.1005-3026.2021.10.003
作者姓名:胡晟  陈悦江  吕晓永  吴东旭
作者单位:(东北大学秦皇岛分校 控制工程学院, 河北 秦皇岛066004)
基金项目:国家自然科学基金资助项目(61903069,51705070); 河北省自然科学基金资助项目(E2018501038).
摘    要:基于Cahn-Hilliard建立Navier-Stokes两相流体动力学和电场Maxwell应力张量法的多物理场耦合模型,用于平行极板型、针型和圆环型电极的液滴聚结仿真.研究结果表明:较强的电场强度诱导分散相液滴聚结耗时较短,液滴链的结构和均匀度受电极形状和电场空间均匀性的影响较大;均匀电场诱导液滴成链较为均匀,并不受液滴数量的影响.在指针型和圆环型电极产生的非均匀电场只能在液滴数量较少的条件下,实现规则液滴链的生成.通过多物理场模型建模,仿真结果能够为静电纺丝、液滴合并、液泡回收等复杂微流体电学控制提供理论基础.

关 键 词:介电泳  电聚结  液滴  Cahn-Hilliard方程  COMSOL,
修稿时间:2020-03-01

Process and Distribution of Droplet Coalescence Based on Dielectrophoresis Effect
HU Sheng,CHEN Yue-jiang,LYU Xiao-yong,WU Dong-xu. Process and Distribution of Droplet Coalescence Based on Dielectrophoresis Effect[J]. Journal of Northeastern University(Natural Science), 2021, 42(10): 1386-1391. DOI: 10.12068/j.issn.1005-3026.2021.10.003
Authors:HU Sheng  CHEN Yue-jiang  LYU Xiao-yong  WU Dong-xu
Affiliation:School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
Abstract:Based on Cahn-Hilliard, a multiphysics coupling model of Navier-Stokes two-phase fluid dynamics and electric field Maxwell stress tensor method is established,which is used for the simulation of droplet coalescence of parallel plate, pointer and ring electrodes. The research results show that the stronger electric field intensity induces a shorter time for the coalescence of the dispersed phase droplets, and the structure and uniformity of the droplet chain are greatly affected by the electrode shape and the spatial uniformity of the electric field. The uniform electric field induces the droplets to form a more uniform chain and is not affected by the number of droplets. The non-uniform electric field generated by the pointer-type and ring-type electrodes can only realize the generation of regular droplet chains under the condition of a small number of droplets. The multi-physics model and simulation results involved in this article can provide a theoretical basis for complex microfluidic electrical control such as electrospinning, droplet merging, and bubble recovery.
Keywords:dielectrophoresis   electrocoalescence   droplet   Cahn-Hilliard equation   COMSOL,
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号