首页 | 本学科首页   官方微博 | 高级检索  
     

一类非线性二阶三点边值问题正解的全局结构
引用本文:魏丽萍. 一类非线性二阶三点边值问题正解的全局结构[J]. 四川大学学报(自然科学版), 2018, 55(3): 440-444
作者姓名:魏丽萍
作者单位:西北师范大学数学与统计学院
基金项目:国家自然科学基金(11671322)
摘    要:本文考虑二阶常微分方程三点边值问题{u″(t)+h(t)f(u)=0,t∈(0,1),u′(0)=0,u(1)=λu(η),其中η∈[0,1),参数λ∈[0,1),函数f∈C([0,∞),[0,∞))满足f(s)0,s0,h∈C([0,1],[0,∞))在[0,1]的任意子区间内不恒为零.在满足条件f0=0,f∞=∞时,本文讨论了该边值问题解所构成的连通分支随着参数λ在[0,1]内的变化而变化的情形,建立了正解的全局结构.主要结果的证明基于锥上的不动点指数定理以及解集连通性质.

关 键 词:多点边值问题  ~连通分支  ~正解  ~锥
收稿时间:2017-10-10
修稿时间:2017-11-20

Global structure of positive solutions for a class of nonlinear second order three point boundary value problems
WEI Li-Ping. Global structure of positive solutions for a class of nonlinear second order three point boundary value problems[J]. Journal of Sichuan University (Natural Science Edition), 2018, 55(3): 440-444
Authors:WEI Li-Ping
Affiliation:College of Mathematics and Statistics, Northwest Normal University
Abstract:In this paper we consider the second-order three-point boundary value Problem~[begin{cases}u''(t)+h(t)f(u)=0,~~ tin (0,1),[2ex]u''(0)=0, ~u(1)=lambda u(eta),end{cases}]where~$etain[0,1)$,~$lambdain[0,1)$~is a parameter,~$fin C( [0,infty),[0,infty))$~satisfies~$f(s)>0$~for $s>0$, and $hin C( [0,1],[0,infty))$~is not identically zero on any subinterval of [0,1]. We give information on the interesting problem as to what happens to the norms of positive solutions as $lambda$ varies in $[0,1)$ under the conditions of~$f_{0}=0,~f_{infty}=infty$.~The proof of main result is based upon the fixed point index theory on cone and connectivity properties of the solution set.
Keywords:Multi-point boundary value problems   Continuum   Positive solutions   Cone
本文献已被 CNKI 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号