首页 | 本学科首页   官方微博 | 高级检索  
     

基于因子分析的母线负荷异常数据辨识方法
引用本文:文旭,王浩,黄刚,颜伟,张爱枫,赵国富,刘高群,曾星星. 基于因子分析的母线负荷异常数据辨识方法[J]. 重庆大学学报(自然科学版), 2021, 44(8): 91-102. DOI: 10.11835/j.issn.1000-582X.2020.035
作者姓名:文旭  王浩  黄刚  颜伟  张爱枫  赵国富  刘高群  曾星星
作者单位:国家电网公司西南分部,成都 610041;重庆大学 输配电装备及系统安全与新技术国家重点实验室,重庆 400044;重庆大学 输配电装备及系统安全与新技术国家重点实验室,重庆 400044;重庆电力交易中心有限公司,重庆 400013;国家电网公司西南分部,成都 610041
基金项目:国家自然科学基金资助项目(51677012)。
摘    要:针对现有母线负荷数据异常辨识方法适应性差、辨识精度不高的问题,基于母线负荷数据现状剖析异常数据的基本特征,分析因子分析的理论及其应用于母线负荷异常数据辨识的原理,提出了基于因子分析的母线负荷异常数据辨识方法.该方法引入因子分析将母线负荷曲线分解为表征曲线正常时序变化规律的基本分量和表征曲线数据异常或随机波动特征的随机分量;同时基于负荷曲线随机分量给出了异常数据辨识的3σ判定准则.最后,以重庆某供电公司算例验证了所提方法较现有方法更具合理性、有效性.

关 键 词:电力系统  因子分析  母线负荷  异常辨识
收稿时间:2020-09-10

Identification method of abnormal data in bus load based on factor analysis
WEN Xu,WANG Hao,HUANG Gang,YAN Wei,ZHANG Aifeng,ZHAO Guofu,LIU Gaoqun,ZENG Xingxing. Identification method of abnormal data in bus load based on factor analysis[J]. Journal of Chongqing University(Natural Science Edition), 2021, 44(8): 91-102. DOI: 10.11835/j.issn.1000-582X.2020.035
Authors:WEN Xu  WANG Hao  HUANG Gang  YAN Wei  ZHANG Aifeng  ZHAO Guofu  LIU Gaoqun  ZENG Xingxing
Affiliation:Southwest Subsection of State Grid, Chengdu 610041, P. R. China;State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China;Chongqing Electric Power Trading Center Co., Ltd., Chongqing 400013, P. R. China
Abstract:To solve the problems of poor adaptability and low identification accuracy of the existing identification methods of bus load abnormal data, this paper profiles the basic characteristics of abnormal data based on the current bus load data. By examining the theory of factor analysis and its application in the identification of abnormal data of bus load, an identification method of abnormal bus load data based on factor analysis is put forward. With this method, factor analysis is introduced to decompose and reconstruct the bus load curve into the basic component which represents the normal time sequence variation law of the curve and the random component that represents the abnormal or random fluctuation characteristics of the curve data. At the same time, based on the reconstructed random component of the load curve, the 3σ criteria for identifying abnormal data are given. Finally, a case study of a power supply company in Chongqing shows that the proposed method is more reasonable and effective than the existing methods.
Keywords:power system  factor analysis  bus load  abnormal identification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号