首页 | 本学科首页   官方微博 | 高级检索  
     

非正规子群都是q群的有限群
引用本文:汪婧,曾泽建,石化国. 非正规子群都是q群的有限群[J]. 西华师范大学学报(哲学社会科学版), 2009, 0(4): 435-436
作者姓名:汪婧  曾泽建  石化国
作者单位:四川职业技术学院,四川遂宁629000
摘    要:得到非正规子群都是q群的完全分类,即证明了如下结论:设q是一个素数,有限群C不是Dedekind群,则G的非正规子群都是q群的充要条件是G为非交换q群且不同构于Q8×E,其中Q8是8阶四元数群,E为初等阿贝尔2-群,或G=PQ,其中P为G的P阶正规子群,Q为G的非正规q群,Q为Dedekind群且p=1(mod q).

关 键 词:有限群  非正规子群  Dedekind群

Non-normal Subgroup Are Finite Groups of q-Groups
WANG Jing,ZENG Ze-jian,SHI Hua-guo. Non-normal Subgroup Are Finite Groups of q-Groups[J]. Journal of China West Normal University:Natural Science Edition, 2009, 0(4): 435-436
Authors:WANG Jing  ZENG Ze-jian  SHI Hua-guo
Affiliation:(Sichuan Vocational and Technical College, Suining 629000, China)
Abstract:In this paper we had discussed that all non-normal subgroups are finite groups of q-groups. And we proved the following theorem:Let q be a prime,finite group G is not a Dedekind group. Then all non-normal subgroups if G are q-groups if and only if G is a non abelian q-group and G is not ismorphic to Q8× E,where Q8 is a quaternion group of order 8,E is an elementary 2 - group or G = PQ,where P is a normal subgroup of G with order p,Q is a non-normal Sylow q-subgroup of G,Q is a Dedekind group and q=1(mod p).
Keywords:finite group  non-normal subgroup  Dedekind group
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号