首页 | 本学科首页   官方微博 | 高级检索  
     

基于上下文模型的非抽样小波图像去噪
引用本文:矫媛,黄斌文,羊秀青. 基于上下文模型的非抽样小波图像去噪[J]. 科技信息, 2010, 0(19): I0052-I0053,I0088
作者姓名:矫媛  黄斌文  羊秀青
作者单位:[1]海南医学院信息技术部计算机教研室,海南海口571101 [2]阿尔卡特朗讯集团青岛研发中心,山东青岛266100 [3]澄迈县公安局刑事侦查大队,海南澄迈571900
摘    要:文章提出了一种新的基于上下文模型的非抽样小波图像去噪方法。与传统正交小波变换不同,非抽样小波在图像分解时不对小波系数进行下采样。分解后的每一个小波系数被模型化为一个广义高斯分布随机变量,应用上下文模型估计每一个小波系数的边缘方差,软阈值函数的构造充分考虑了待阈值化小波系数与其邻域小波系数的相关性,产生空间自适应阈值。通过对加噪图像的实验,可以看出本文方法与其它几种传统去噪方法相比,不仅去噪效果有很大的改进,具有更好的重建视觉效果,而且信噪比也有较为明显的提高。

关 键 词:非抽样小波变换  图像去噪  上下文模型  空间自适应阈值

Nondecimated Wavelet Image Denoising Based on Context Model
JIAO Yuan,HUAGN Bin-wen,YANG Xiu-qing. Nondecimated Wavelet Image Denoising Based on Context Model[J]. Science, 2010, 0(19): I0052-I0053,I0088
Authors:JIAO Yuan  HUAGN Bin-wen  YANG Xiu-qing
Affiliation:1.Computer Teaching and Research Section, Information Technology Department, Hainan Medical College,Haikou Hainan,571101; 2.Alcatel-Luccnt group Qingdao research center,Qingdao Shandong, 266100; 3.Public Security Bureau Criminal Investigation Group,Chengmai Hainan, 571900)
Abstract:A new nondeeimated wavelet transform image denoising method which is based on context model is proposed in this paper. In nondeeimated wavelet transform, the wavelet coefficients are not decimated when the image is decomposed, which is different from traditional orthogonal wavelet transform. After the decomposition, each wavelet coefficient is modeled as a random variable of generalized Gaussian distribution. Context model is applied to estimate edge variance of each wavelet coefficient. The construction of soft-threshold function greatly considers the relativity of being threshold coefficient and its neighbor and then, the spatial adaptive threshold is produced. From experiment results, we can see that compared with other traditional denoising methods, our method can not only greatly improve denoising effect and have better reconstruction visual effect, but also enhances the Signal to Noise Ratio (SNR).
Keywords:Nondecimated wavelet transform  Image de-noising  Context model  Spatial adaptive threshold
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号