首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进遗传算法的自抗扰控制器优化设计
引用本文:基于改进遗传算法的自抗扰控制器优化设计. 基于改进遗传算法的自抗扰控制器优化设计[J]. 山东科学, 2016, 29(5): 1-8. DOI: 10.3976/j.issn.1002-4026.2016.05.001
作者姓名:基于改进遗传算法的自抗扰控制器优化设计
作者单位:1. 青岛理工大学自动化工程学院,山东 青岛 266520;2. 山东省计算中心(国家超级计算济南中心),山东 济南 250014;3. 华北电力大学电气与电子工程学院,北京 102206
基金项目:国家自然科学基金项目(51475251);山东省自然科学基金(ZR2013FM014;ZR2015FQ015;ZR2014EEM024); 山东省自主创新及成果转化专项(2014CGZH0806)
摘    要:针对超空泡航行体受力特征及其航行时具有非线性、时滞与耦合等复杂问题,提出可根据适应度对控制参数进行自适应动态调整的改进遗传算法。通过建立超空泡航行体纵向模型,设计专用自抗扰控制器对其进行控制,并针对控制器参数多、调节困难的问题,改进了自适应遗传算法对其精确优化。最后通过特性仿真,验证了基于改进的自适应算法的自抗扰控制器相比经典自抗扰控制器的优势。仿真结果表明,该自抗扰控制器符合实际需求,具有良好的控制效果。

关 键 词:超空泡航行体  参数优化  自抗扰控制器  解耦  改进自适应遗传算法  
收稿时间:2016-05-12

Improved genetic algorithm based optimization design of active disturbance rejection controller
TANG Yong wei,ZHAO Jing bo,WANG Mao li,HAO Hui juan,L Xiao hui. Improved genetic algorithm based optimization design of active disturbance rejection controller[J]. Shandong Science, 2016, 29(5): 1-8. DOI: 10.3976/j.issn.1002-4026.2016.05.001
Authors:TANG Yong wei  ZHAO Jing bo  WANG Mao li  HAO Hui juan  L Xiao hui
Affiliation:1. School of Automation Engineering, Qingdao University of Technology, Qingdao 266520, China;;2. Shandong Computer Science Center (National Supercomputer Center in Jinan), Jinan 250014, China;3. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Abstract:We present an improved genetic algorithm that can adaptively adjust control parameters based on fitness degree for the force characteristics of supercavitation navigation body and such complicated issues as nonlinearity, time lag and coupling. We construct longitudinal model of supercavitation navigation body, which is controlled by a specific active disturbance rejection controller (ADRC). We further improve adaptive genetic algorithm to precisely optimize it for such issues as mass controller parameters and difficult adjustment. We eventually verify the advantage of the improved ADRC over classical ADRC through simulation. Simulation results show that the improved ADRC satisfies practical requirements and has better control effect.
Keywords:improved adaptive genetic algorithm  parameter optimization  supercavitation navigation body  decoupling  active disturbance rejection controller  
本文献已被 CNKI 等数据库收录!
点击此处可从《山东科学》浏览原始摘要信息
点击此处可从《山东科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号