首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群算法的多效益交叉口信号配时模型
引用本文:基于粒子群算法的多效益交叉口信号配时模型. 基于粒子群算法的多效益交叉口信号配时模型[J]. 山东科学, 2016, 29(6): 87-93. DOI: 10.3976/j.issn.1002-4026.2016.06.014
作者姓名:基于粒子群算法的多效益交叉口信号配时模型
作者单位:北京交通大学交通运输学院,北京 100044
摘    要:城市交通的延误主要发生于交叉口,提高交叉口信号的运行效率对缓解交通拥堵具有重要作用。本文建立了基于车辆平均延误、停车次数和通行能力的多效益信号配时优化模型,并使用了粒子群算法进行编程求解。实际案例分析结果表明,模型求解出的优化配时方案降低了交叉口车均延误和停车次数,同时提高了交叉口的通行能力,综合改善了交叉口的多个指标,对提高交叉口的运行效率具有显著作用。

关 键 词:信号配时  粒子群算法  多效益优化模型  
收稿时间:2016-06-14

Particle swarm optimization based multi benefit intersection signal timing model
LUO Bing,WEI Li-ying. Particle swarm optimization based multi benefit intersection signal timing model[J]. Shandong Science, 2016, 29(6): 87-93. DOI: 10.3976/j.issn.1002-4026.2016.06.014
Authors:LUO Bing  WEI Li-ying
Affiliation:School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
Abstract:Urban traffic delay usually occurs at intersections, so the improvement of operational efficiency of a signalized intersection is very important for alleviation of traffic congestion. We establish a multi benefit signal timing optimization model based on average vehicle delay, vehicle stopping times and traffic capacity of the intersection, and employ particle swarm optimization (PSO) algorithm to solve it. Analysis of actual cases demonstrates that the model reduces average vehicle delay and stopping times of an intersection, increases traffic capacity of an intersection, and comprehensively improves multiple indicators of an intersection. It therefore has significant effect on the improvement of operational efficiency of an intersection.
Keywords:signal timing   particle swarm optimization   multi-benefit optimization model  
本文献已被 CNKI 等数据库收录!
点击此处可从《山东科学》浏览原始摘要信息
点击此处可从《山东科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号