首页 | 本学科首页   官方微博 | 高级检索  
     

基于多阶段的模糊C-均值算法的模糊聚类分析研究
引用本文:黄力明,吴小俊,王士同. 基于多阶段的模糊C-均值算法的模糊聚类分析研究[J]. 南京师大学报(自然科学版), 1999, 22(4): 19-22
作者姓名:黄力明  吴小俊  王士同
作者单位:镇江市高等专科学校!212003,镇江,华东船舶工业学院!212003,镇江,华东船舶工业学院!212003,镇江
摘    要:对模糊聚类分析算法进行研究,在模糊C- 均值算法(FCM)的基础上加以改进,将聚类过程分为二个阶段,形成多阶段模糊C- 均值算法(MFCM),使其对Iris数据聚类.研究表明:多阶段的模糊C- 均值算法比模糊C- 均值算法性能优越.

关 键 词:模糊集  聚类分析  模式识别  隶属函数
修稿时间:1998-10-09

A Study on Fuzzy Clustering Based on Multistage FCM Algorithm
Huang Liming,Wu Xiaojun,Wang Shitong. A Study on Fuzzy Clustering Based on Multistage FCM Algorithm[J]. Journal of Nanjing Normal University(Natural Science Edition), 1999, 22(4): 19-22
Authors:Huang Liming  Wu Xiaojun  Wang Shitong
Abstract:In this paper, A study is made on fuzzy clustering algorithm, Improvements have been made on the fuzzy C-means clustering algorithm (FCM)by dividing it into two stages, which is transformed into Multistage fuzzy C-means clustering Algorithm (MFCM).Numerical experiment is made on the Iris data. The research indicates that the Multistage fuzzy C-means clustering algorithm is more powerful than fuzzy C-means clustering Algorithm.
Keywords:fuzzy sets   clustering   pattern recognition   membership function
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号