首页 | 本学科首页   官方微博 | 高级检索  
     

基于免疫单亲遗传和模糊C均值的聚类算法
引用本文:蒋红芬 柳益君 陈丹. 基于免疫单亲遗传和模糊C均值的聚类算法[J]. 江苏技术师范学院学报, 2006, 12(4): 46-50
作者姓名:蒋红芬 柳益君 陈丹
作者单位:江苏技术师范学院计算机科学与工程学院 江苏常州213001
摘    要:聚类算法是数据挖掘算法中的重要方法之一。本文在分析了FCM算法和基于遗传聚类算法的不足基础上,提出了一种基于免疫单亲遗传和模糊C均值的混合聚类算法,克服了FCM的局部最优问题以及普通遗传算法聚类时的搜索速度和聚类精度的矛盾,实验表明该算法是有效的。

关 键 词:聚类分析  FCM  遗传算法  免疫机制
收稿时间:2006-03-31
修稿时间:2006-04-14

Immune Evolutionary Algorithm Based on Fuzzy C-means and A Parthian-genetic Algorithm
JIA NG Hong-fen, LIU Yi-jun, CHEN Dan. Immune Evolutionary Algorithm Based on Fuzzy C-means and A Parthian-genetic Algorithm[J]. Journal of Jiangsu Teachers University of Technology, 2006, 12(4): 46-50
Authors:JIA NG Hong-fen   LIU Yi-jun   CHEN Dan
Affiliation:School of Computer Science and Engineering, Jiangsu Teachers University of Technology, Changzhou 213001, China
Abstract:Cluster analysis is a kind of unsupervised learning method,which can extract the hidden rules from the feature data set of the objects.A novel clustering algorithm is developed by using immune evolutionary method after analyzing the advantages and disadvantages of Fuzzy C-Means algorithm and the GA-based clustering algorithm.Theoretical analysis and experiments show that this method is more efficient.
Keywords:Clustering analysis  FCM  Genetic algorithm  Immune mechanism
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号