首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的非线性磁悬浮系统控制
引用本文:赵石铁,高宪文,车昌杰. 基于RBF神经网络的非线性磁悬浮系统控制[J]. 东北大学学报(自然科学版), 2014, 35(12): 1673-1677. DOI: 10.12068/j.issn.1005-3026.2014.12.001
作者姓名:赵石铁  高宪文  车昌杰
作者单位:(东北大学 信息科学与工程学院, 辽宁 沈阳110819)
基金项目:国家自然科学基金重点项目(61034005)
摘    要:磁悬浮系统是一个典型的不确定、非线性系统.由于磁悬浮系统的复杂性很难建立精确的数学模型,采用RBF神经网络(RBFNN)对非线性磁悬浮系统进行辨识,再根据神经网络自适应控制原理设计了非线性磁悬浮系统的神经网络自适应状态反馈控制器与自适应PID控制器,并利用MATLAB进行了仿真.仿真结果表明,神经网络自适应控制能很好地控制本磁悬浮系统;神经网络自适应控制器对于此非线性磁悬浮系统位置具有良好的控制效果,该控制系统具有较好的稳态特性和控制特性.

关 键 词:RBF神经网络  自适应控制  状态反馈  磁悬浮系统  

Control of a Nonlinear Magnetic Levitation System Based RBF Neural Network
ZHAO Shi-tie;GAO Xian-wen;CHE Chang-jie. Control of a Nonlinear Magnetic Levitation System Based RBF Neural Network[J]. Journal of Northeastern University(Natural Science), 2014, 35(12): 1673-1677. DOI: 10.12068/j.issn.1005-3026.2014.12.001
Authors:ZHAO Shi-tie  GAO Xian-wen  CHE Chang-jie
Affiliation:School of Information Science & Engineering, Northeastern University, Shenyang 110819, China.
Abstract:Magnetic levitation system is a typical nonlinear and uncertain system, because it must be combined with a controller which has good control performance to be applied in various occasions. The identified nonlinear magnetic levitation system using of the Radial Basis Function neural network(RBFNN)was proposed. The neural network adaptive state feedback controller and adaptive PID controller of magnet levitation system was designed based on the neural network adaptive control principle. Besides, a simulation of the system was proposed by using MATLAB, and the result showed that neural network adaptive controller had a good effect on this nonlinear system. In addition,this control system had a preferable stability and control property.
Keywords:RBF neural networks  adaptive control  state feedback  magnetic levitation system  
本文献已被 CNKI 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号