Nernst-Planck-Poisson方程的差分/谱方法求解 |
| |
引用本文: | 刘晓玲,许传炬,陈清华. Nernst-Planck-Poisson方程的差分/谱方法求解[J]. 北京师范大学学报(自然科学版), 2017, 53(6): 643-649. DOI: 10.16360/j.cnki.jbnuns.2017.06.003 |
| |
作者姓名: | 刘晓玲 许传炬 陈清华 |
| |
作者单位: | 厦门大学数学科学学院,361005,福建厦门;北京师范大学系统科学学院,100875,北京 |
| |
基金项目: | 国家自然科学基金资助项目(11471274;71671017),北京师范大学学科建设经费教师自主项目 |
| |
摘 要: | ![]() 研究了Nernst-Planck-Poisson(NPP)方程的数值计算方法.推导了弱解的稳定性,提出了一系列时间离散格式,分析了半离散问题的若干性质,如离散浓度解的非负性(非负浓度是NPP系统的重要性质),格式的条件/无条件稳定性.结合谱方法进行空间离散,得到全离散数值格式,通过数值实验验证了算法的时间一阶、二阶收敛性,空间谱收敛性,以及离子浓度数值解的非负性.
|
关 键 词: | Nernst-Planck-Poisson方程 稳定化的有限差分格式 谱方法 |
Difference/spectral methods for Nernst-Planck-Poisson equation |
| |
Affiliation: | 1 ) School of Mathematical Sciences ,Xiamen University ,361005 ,Xiamen ,Fujian ,China ; 2 ) School of Systems Science ,Beijing Normal University ,100875 ,Beijing ,China |
| |
Abstract: | ![]() Numerical methods for Nernst-Planck-Poisson equation are investigated.Stability of weak solution is derived.Several time-discretizations are proposed,and certain of their different properties are demonstrated,such as non-negativity of discrete concentrations,stability condition,and unconditional stability.With application to spectral discretization in space,full discrete numerical schemes are given.Numerical tests carried out show first/second order convergence in time,spectral convergence in space,nonnegativity of numerical solution of concentration. |
| |
Keywords: | Nernst-Planck-Poisson equation stabilized finite difference schemes spectral method |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《北京师范大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《北京师范大学学报(自然科学版)》下载全文 |
|