Heat Transfer in the Microlayer Under a Bubble During Nucleate Boiling |
| |
Authors: | David M. Christopher Lu Zhang |
| |
Affiliation: | Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China |
| |
Abstract: | Many studies have shown that a very thin liquid microlayer forms under vapor bubbles during nucleate boiling. The heat transfer from the surface to the bubble is then significantly affected by this microlayer and the curved region leading into the microlayer. Various models have been developed to predict the microlayer shape and the heat transfer along the curved interfacial region, but they tend to have inconsistent boundary conditions or unrealistic results. This paper presents a theoretical model to predict the microlayer thickness and the heat transfer rates for a variety of conditions. The results show how the wall superheat, the Hamaker constant, the bubble radius, and the accommodation coefficient at the interface affect the evaporation heat transfer rates and the microlayer shape for a large range of conditions for water and FC 72. The microlayer results are then shown to compare well with predictions made by solving the Navier-Stokes equations in the microlayer. |
| |
Keywords: | |
本文献已被 CNKI ScienceDirect 等数据库收录! |
|