首页 | 本学科首页   官方微博 | 高级检索  
     

基于Rayleigh-Ritz法的复合材料薄壁圆柱壳热屈曲和热模态分析
引用本文:李亚杯,莫军,陈红永. 基于Rayleigh-Ritz法的复合材料薄壁圆柱壳热屈曲和热模态分析[J]. 科学技术与工程, 2019, 19(1)
作者姓名:李亚杯  莫军  陈红永
作者单位:中国工程物理研究院总体工程研究所,中国工程物理研究院总体工程研究所,中国工程物理研究院总体工程研究所
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:摘要:热环境中的结构受热效应等的影响,结构刚度会发生变化,进而结构振动模态对几何参数、材料参数等的敏感性也会改变。针对纤维增强复合材料圆柱壳,建立能量方程,计入面内热载荷对圆柱壳做功,使用Rayleigh-Ritz法求解屈曲温度及振动频率等,使用有限元法验证了计算模型的准确性。重点关注了不同的几何参数、铺设角度及铺设方式下温度对圆柱壳的振型的影响。研究结果表明振动模态越接近屈曲模态,温度对频率的影响越大,且各阶振型的周向波数不同,温度对振动频率的影响也不同;圆柱壳越厚或越短,基频振型的周向波数越多;温度小于0.95倍屈曲温度时,温度增加基本不改变基频的振型,但接近屈曲温度时,在某些铺设角度下,某些振型的频率下降至低于原基频,发生振型跃迁。

关 键 词:复合材料圆柱壳,热环境,模态,屈曲
收稿时间:2018-09-03
修稿时间:2018-10-29

Thermal Buckling and Modal Analysis of Composite Thin-Cylindrical Shells Based on Rayleigh-Ritz Method
liyabei,and chenhongyong. Thermal Buckling and Modal Analysis of Composite Thin-Cylindrical Shells Based on Rayleigh-Ritz Method[J]. Science Technology and Engineering, 2019, 19(1)
Authors:liyabei  and chenhongyong
Affiliation:Institute of Systems Engineering, China Academy of Engineering Physics,,Institute of Systems Engineering, China Academy of Engineering Physics
Abstract:[Abstract] Under the influence of thermal effect, the stiffness of the structure will change, and the sensitivity of vibration mode to geometric parameters and material parameters will also change. For fiber reinforced composite cylindrical shells, the energy equation is established, and the work done by in-plane thermal load is taken into account, and the buckling temperature and vibration frequencies are solved by Rayleigh-Ritz method. The accuracy of the calculation model is verified by finite element method. The effects of temperature on the vibration modes of cylindrical shells are focused in different geometric parameters, laying angles. The results show that the closer the vibration mode is to the buckling mode, the greater the influence of temperature on the frequency, and the different circumferential wave number of each mode, the different influence of temperature on the vibration frequency. The thicker or shorter cylindrical shell, the more circumferential wave number of fundamental frequency mode. When the temperature is less than 0.95 times of the buckling temperature, the vibration mode of the fundamental frequency is basically unchanged when increase the temperature. However, near the buckling temperature, at some laying angles, the frequencies of some modes fall below the original fundamental frequency, and the mode transition occurs.
Keywords:
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号