首页 | 本学科首页   官方微博 | 高级检索  
     

人工智能时代知识图谱表示学习方法体系
引用本文:张翙,杨伟杰,刘文文,张珣,段大高,韩忠明. 人工智能时代知识图谱表示学习方法体系[J]. 科技导报(北京), 2021, 39(22): 94-110. DOI: 10.3981/j.issn.1000-7857.2021.22.011
作者姓名:张翙  杨伟杰  刘文文  张珣  段大高  韩忠明
作者单位:1. 北京工商大学计算机学院, 北京 100048;
2. 北京工商大学人工智能学院, 北京 100048;
3. 食品安全大数据技术北京市重点实验室, 北京 100048;
4. 北京工商大学国际经管学院, 北京 100048
基金项目:国家重点研发计划项目(2019YFC0507800);北京市自然科学基金项目(4172016);北京市教委科研计划一般项目(KM201710011006)
摘    要:总结了不含辅助信息的知识图谱表示学习方法,主要是基于距离和基于语义匹配2类主流方法;研究了包含文本辅助信息和类别辅助信息的知识图谱表示学习方法;通过对比各类表示学习方法的优缺点,发现引入辅助信息能有效表达知识图谱中新实体,但时空开支大幅上升,因而在现阶段,不含辅助信息的方法更易应用于实际场景中.分析了知识图谱嵌入如何应...

关 键 词:知识图谱  知识图谱嵌入  表示学习  深度学习
收稿时间:2021-03-13

Knowledge graph representation learning method system in the era of artificial intelligence
ZHANG Hui,YANG Weijie,LIU Wenwen,ZHANG Xun,DUAN Dagao,HAN Zhongming. Knowledge graph representation learning method system in the era of artificial intelligence[J]. Science & Technology Review, 2021, 39(22): 94-110. DOI: 10.3981/j.issn.1000-7857.2021.22.011
Authors:ZHANG Hui  YANG Weijie  LIU Wenwen  ZHANG Xun  DUAN Dagao  HAN Zhongming
Affiliation:1. School of Computer Science and Engineering, Beijing Technology and Business University, Beijing 100048, China;
2. School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China;
3. Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing 100048, China;
4. School of Economics and Management, Beijing Technology and Business University, Beijing 100048, China
Abstract:In recent years, the knowledge graph representation learning has been used to represent the components of the knowledge graphs in a low-dimensional vector embedding, as a mainstream way to combine the artificial intelligence with the knowledge graphs. This paper reviews the mainstream knowledge graph representation learning methods without auxiliary information, mainly, the distance-based and the semantic matching-based methods, and the knowledge graph representation learning methods containing textual auxiliary information and category auxiliary information, along with the advantages and the disadvantages of various representation learning methods. It is found that the introduction of auxiliary information can effectively represent new entities and relationships in the knowledge graph, but the time and space costs are significantly increased, and thus the methods without auxiliary information are more easily applied in practical scenarios at this stage. Finally, we show how the knowledge graph embedding can be applied to downstream tasks such as the triad classification, the link prediction and the recommender systems. A collection of datasets and open source libraries for different tasks is compiled and, and a comprehensive outlook on promising research directions such as large-scale, dynamic knowledge graphs is given.
Keywords:knowledge graph  knowledge graph embedding  representation learning  deep learning  
本文献已被 万方数据 等数据库收录!
点击此处可从《科技导报(北京)》浏览原始摘要信息
点击此处可从《科技导报(北京)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号