首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的模糊决策树模型及其应用
引用本文:亓呈明,郝玲,崔守梅. 一种新的模糊决策树模型及其应用[J]. 山东大学学报(理学版), 2007, 42(11): 107-109
作者姓名:亓呈明  郝玲  崔守梅
作者单位:北京联合大学,自动化学院,北京,100101;山东省淄博师范高等专科学校,数理科学系,山东,淄博,255100
摘    要:模糊决策树是决策树在模糊环境下的一种推广,虽然其表示形式更符合人类的思维,但在构造时会增加预处理的工作量和创建树时的开销。基于这种情况,提出了一种混合算法,算法保留了较少属性值的Shannon熵,计算多属性和连续属性值模糊化后的模糊熵。将该算法应用于滑坡数据的挖掘中,得到了更易于理解的决策树和有效的规则,与传统算法的性能比较也证明了该算法的有效性。

关 键 词:分类  模糊熵  混合决策树
文章编号:1671-9352(2007)11-0107-03
收稿时间:2007-06-21

A new fuzzy decision tree model and its application
QI Cheng-ming,HAO Ling,CUI Shou-mei. A new fuzzy decision tree model and its application[J]. Journal of Shandong University, 2007, 42(11): 107-109
Authors:QI Cheng-ming  HAO Ling  CUI Shou-mei
Affiliation:1. College of Automation, Beijing Union University, Beijing 100101;2. Mathematics and Physical Sciences Department, Zibo Normal College, Zibo 255100
Abstract:A fuzzy decision tree is the generalization of a decision tree in a fuzzy environment. The knowledge represented by a fuzzy decision tree is more natural to the way of human thinking, but there is the additional work of preprocessing and cost of constructing trees. A new hybrid fuzzy decision tree model was proposed. The new algorithm calculates the entropy of multi-valued and continuous-valued attributes after fuzzification and Shannon entropy of other attributes was calculated by this new algorithm. Simulation results confirm that the proposed model can lead to tmderstandable decision trees and extract effective rules. Experimental results show that the proposed model is more effective and efficient than a fuzzy decision tree and C4.5.
Keywords:classification   fuzzy entropy   hybrid fuzzy decision tree
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号