首页 | 本学科首页   官方微博 | 高级检索  
     

多准则融合的中文命名实体识别方法
作者姓名:蔡庆
作者单位:江苏自动化研究所
基金项目:“十三五”装备预研共用技术和领域基金资助项目(41412030902);
摘    要:为提高中文命名实体识别任务的识别率,提出了一种多准则融合模型.采用基于字的BERT语言模型作为语言信息特征提取层,将其接入多准则共享连接层和条件随机场(CRF)层,得到融合模型.建立大规模中文混合语料库,优化模型参数,使用单GPU设备完成BERT语言模型的预训练.将融合模型在MSRA-NER和RMRB-98-1实体标注集上进行独立训练和混合训练,得到各语料库独立的单准则中文命名实体识别模型和多准则融合中文命名实体识别模型.结果表明,多准则融合中文命名实体识别模型能够挖掘语料库间的共有信息,提高中文命名实体的识别率,MSRA-NER和RMRB-98-1实体标注集上的F1值分别为94.46%和94.32%,优于其他现有模型.

关 键 词:命名实体识别  BERT  条件随机场  多准则学习
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号