首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊CMAC网络的非线性自适应逆控制
引用本文:侯海军,LEI Yong,叶小勇. 基于模糊CMAC网络的非线性自适应逆控制[J]. 系统仿真学报, 2008, 20(8): 2039-2043
作者姓名:侯海军  LEI Yong  叶小勇
作者单位:四川大学电气信息学院,四川,成都,610065
摘    要:针对非线性自适应逆控制中非线性对象的建模和逆建模的精确性这一问题,提出一种基于模糊小脑模型关节控制器(Fuzzy Cerebellar Model Articulation Controller, FCMAC)网络的非线性自适应逆控制方案.将模糊逻辑思想嵌入到CMAC中构成FCMAC来对非线性对象进行较精确的逆建模,从而构建逆控制系统.在对象特性未知的情况下,选用BP网络来对象进行正建模,并由BP网络的辩识结果来对FCMAC的参数进行调整.仿真实验表明了该方案的有效性,且验证了其控制效果较单纯的CMAC网络逆控制更理想.

关 键 词:神经网络  模糊小脑模型关节控制器  自适应逆控制  BP算法

Non-linear Adaptive Inverse Control Based on Fuzzy CMAC Network
HOU Hai-jun,LEI Yong,YE Xiao-yong. Non-linear Adaptive Inverse Control Based on Fuzzy CMAC Network[J]. Journal of System Simulation, 2008, 20(8): 2039-2043
Authors:HOU Hai-jun  LEI Yong  YE Xiao-yong
Abstract:Adaptive inverse control is a new way to design control system and tuner. Its successful application is determined by the accuracy of non-linear modeling and inverse modeling. A method of non-linear adaptive inverse control based on Fuzzy Cerebellar Model Articulation Controller (FCMAC) is proposed to solve this problem. Theoretically,FCMAC which combines the advantages of fuzzy logic and CMAC can approach any complex non-linear function in any precision. According this characteristic,an exact inverse model can be obtained,and then construct the inverse control system. Unknown the characteristic of the plant,choosing BP Network can make a modeling for the plant. Also using the result of identification of BP Network the Weight of FCMAC can be tuned. Simulating experiment proves the feasibility of the control system and that the effect of control system is better than CMAC inverse control.
Keywords:neural network  FCMAC  adaptive inverse control  BP algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号