首页 | 本学科首页   官方微博 | 高级检索  
     

用径向基函数解一类微积分方程
引用本文:张颖超. 用径向基函数解一类微积分方程[J]. 新余高专学报, 2012, 17(3): 81-83
作者姓名:张颖超
作者单位:广西师范大学数学科学学院,广西桂林,541004
摘    要:通过一个数值算例,探讨了用径向基函数解一类微积分方程的问题。针对数值算例,比较了在相同步长时,不同的径向基函数对微积分方程数值解的精确程度,并比较不同的正定径向基函数在相同的形状参数时绝对误差的差异,说明径向基函数形状参数的选取与方程数值解的精度密切相关,同时也论证了在插值过程中所得到的矩阵方程解的存在唯一性。

关 键 词:径向基函数  数值解  微积分方程  形状参数  误差

Using radial basis function to solve an integral -differential equation
Affiliation:ZHANG Ying - chao (Guangxi Normal University, Guilin 41004 China)
Abstract:An algorithm for integral -differential equation based on the positive definite radial basis tunction approximation scheme is presented. A fairly explicit scheme is used to approximate the solution. One model problem of the algorithm is given. The comparison is made with the exact solutions of the problem by different shape parameter and different nodal distance, illustrating that numerical results may not be better when nodal distance is smaller. The shape parameter of radial basis functions is important for the numerical solution of Integral- differential Equation. This paper proved that the coefficient matrix that we obtained is nonsingular, that is, matrix equation has a solution.
Keywords:radial basis function  numerical solutions  integral- differential equation  shape parameter  error
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号