首页 | 本学科首页   官方微博 | 高级检索  
     

应用支持向量机处理岩土材料的细观图像
引用本文:刘延保,曹树刚,刘玉成,张立强,李勇,王军. 应用支持向量机处理岩土材料的细观图像[J]. 重庆大学学报(自然科学版), 2008, 31(7): 720-724
作者姓名:刘延保  曹树刚  刘玉成  张立强  李勇  王军
作者单位:重庆大学,西南资源开发及环境灾害控制工程教育部重点实验室,重庆,400030;重庆大学,西南资源开发及环境灾害控制工程教育部重点实验室,重庆,400030;毕节学院物理系,贵州,毕节,551700
基金项目:国家自然科学基金资助项目
摘    要:应用数字图像处理技术提取非均质岩土材料的细观特征是量化其细观结构的有效途径。为提高图像处理的质量和效率,在进行数字图像处理的阈值分割时,采用统计学习理论中的支持向量机分类方法。选取待原始图像的一个矩形区域作为训练样本图像,提取这些样本点的特征与训练目标一起组成训练样本集,通过对训练样本集的学习,生成SVM(support vector machine)分类机,利用SVM分类机提取原始图像中的特征图像。以花岗岩为例,利用该方法提取其细观结构,结果表明,合理选取训练样本和模型参数,可以提高图像处理的准确率和效率,得到最佳的处理结果。

关 键 词:岩石力学  细观结构  图像处理  支持向量机

Application of a support vector machine to meso-structural image analysis of geomaterials
LIU Yan-bao,CAO Shu-gang,LIU Yu-cheng,,ZHANG Liqiang,LI Yong,WANG Jun. Application of a support vector machine to meso-structural image analysis of geomaterials[J]. Journal of Chongqing University(Natural Science Edition), 2008, 31(7): 720-724
Authors:LIU Yan-bao  CAO Shu-gang  LIU Yu-cheng    ZHANG Liqiang  LI Yong  WANG Jun
Affiliation:LIU Yan-bao1,CAO Shu-gang1,LIU Yu-cheng1,2,ZHANG Liqiang1,LI Yong1,WANG Jun1
Abstract:Applying digital image processing technology to the extraction of meso-structural features from heterogeneous geomaterials is an effective approach for quantifying meso-structures.To improve the quality and efficiency of image processing,the classification method of the support vector machines(SVM) based on statistics theory was utilized in the threshold segmentation of digital image processing.First,a rectangular region of the original image was selected as the training sample image.The characteristics derived from this sample image and training targets constitute a training sample set.By learning the training sample set,the SVM classifier was produced next.The characteristic image then can be obtained using the SVM classifier.When employing this method to analyze a granitic rock image,the results show that the new method improves the precision as well as the efficiency of image processing.The new method obtains the best processing performance when reasonable training samples and SVM parameters are selected.
Keywords:rock mechanics  meso-structure  image processing  support vector machines
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号