首页 | 本学科首页   官方微博 | 高级检索  
     

基于注塑过程数据的制品尺寸合格性判定
引用本文:宋建,王宇峰,梁家睿,李东. 基于注塑过程数据的制品尺寸合格性判定[J]. 科学技术与工程, 2022, 22(27): 12000-12005
作者姓名:宋建  王宇峰  梁家睿  李东
作者单位:广东省华南理工大学高分子先进制造技术及装备重点实验室;金发科技股份有限公司
基金项目:国家重点研发计划项目(2019YFB1704900)
摘    要:针对注塑生产过程中人工质量检测存在的效率低、成本高等问题,提出了一种基于注塑加工过程数据来对产品尺寸是否合格进行预测判定的方法。先对清洗后的数据集采用5折交叉验证筛选出LR(logistic regression)模型、SVM(support vector machine)模型等5个分类模型,再以ROC(receiver operating characteristic)曲线和AUC(area under curve)值作为性能评估指标,综合比较和分析了5个分类模型在不同特征选取方法下的分类性能。结果表明:基于树模型特征选取与LR分类模型组合对本文的数据集表现出了优良的分类性能,准确率可达96.42%,具有一定的工程应用价值。

关 键 词:合格性预测  注塑成型  分类模型  特征提取
收稿时间:2021-10-16
修稿时间:2022-06-16

Research on dimensional qualification determination of injection molding products based on process data
Song Jian,Wang Yufeng,Liang Jiarui,Li Dong. Research on dimensional qualification determination of injection molding products based on process data[J]. Science Technology and Engineering, 2022, 22(27): 12000-12005
Authors:Song Jian  Wang Yufeng  Liang Jiarui  Li Dong
Affiliation:Guangdong Advanced Polymer Manufacturing Technology and Equipment Key Laboratory, South China University of Technology
Abstract:Aiming at the problems of low efficiency and high cost of manual quality inspection in injection molding production process, a method for predicting and judging whether the product size is qualified based on injection molding process data is proposed. Firstly, for the cleaned data set, five classification models such as LR model and SVM model are selected by 5-fold cross validation, and then ROC curve and AUC value are used as performance evaluation indexes, The classification performance of five classification models under different feature selection methods is comprehensively compared and analyzed. The results show that the combination of tree model feature selection and LR algorithm shows excellent classification performance for the data set in this paper, and the accuracy can reach 96.42%, which has a certain engineering application value.
Keywords:
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号