首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Observation of random-phase lattice solitons
Authors:Cohen Oren  Bartal Guy  Buljan Hrvoje  Carmon Tal  Fleischer Jason W  Segev Mordechai  Christodoulides Demetrios N
Institution:Physics Department and Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Abstract:The coherence of waves in periodic systems (lattices) is crucial to their dynamics, as interference effects, such as Bragg reflections, largely determine their propagation. Whereas linear systems allow superposition, nonlinearity introduces a non-trivial interplay between localization effects, coupling between lattice sites, and incoherence. Until recently, all research on solitary waves (solitons) in nonlinear lattices has involved only coherent waves. In such cases, linear dispersion or diffraction of wave packets can be balanced by nonlinear effects, resulting in coherent lattice (or 'discrete') solitons; these have been studied in many branches of science. However, in most natural systems, waves with only partial coherence are more common, because fluctuations (thermal, quantum or some other) can reduce the correlation length to a distance comparable to the lattice spacing. Such systems should support random-phase lattice solitons displaying distinct features. Here we report the experimental observation of random-phase lattice solitons, demonstrating their self-trapping and local periodicity in real space, in addition to their multi-peaked power spectrum in momentum space. We discuss the relevance of such solitons to other nonlinear periodic systems in which fluctuating waves propagate, such as atomic systems, plasmas and molecular chains.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号