首页 | 本学科首页   官方微博 | 高级检索  
     


LONGTIME BEHAVIOR FOR THE ACTIVATOR-INHIBITOR MODEL
Authors:WU Jianhua
Abstract:The paper first discusses the longtime behavior of the activator-inhibitor model, the existence of the maximal attractor is given. Then using the mathematical induction and the properties of linear semigroup, the regularity result for the maximal attractor is obtained. Next, it is proved that its Hausdorff or fractal dimension is finite.Finally, further estimates are verilied by Rothe's inequality and fractional operators, and the existence of inertial manifold is then proved.
Keywords:Maximal attractor   estimate of dimension   inertial manifold   activatorinhibitor model
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号