首页 | 本学科首页   官方微博 | 高级检索  
     检索      

不同相构型改性718型合金的高温稳定性评价
作者单位:1)State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300354, China
摘    要:Inconel 718 is a Ni–Fe-based superalloy widely used in aerospace engines because of its excellent mechanical properties. However, the inferior stability of the γ″ phase limits the application of Inconel 718, which coarsens rapidly at temperatures greater than 650°C. Further improving the temperature tolerance of Inconel 718 requires optimization of the phase configuration via modification of the alloy’s chemical composition. Given the aforementioned objective, this work was conducted to study the precipitation behavior and thermal stability of the strengthening phases with various structures in modified Inconel 718 alloys by tailoring the Al/Ti ratio. With increasing Al/Ti ratio, three particle configurations were formed: γ′/γ″ composite, isolated γ′, and γ′/γ″/γ′ composite particles. The results of aging tests demonstrate that the isolated γ′ and the γ′/γ″/γ′ composite structure exhibited better thermal stability at temperature as high as 800°C. The isolated γ′ exhibited a reduced coarsening rate compared with the γ′/γ″/γ′ composite particles because the isolated γ′ phase was rich in Al, Ti, and Nb. However, the γ′/γ″ composite particles coarsened and decomposed rapidly during aging at temperatures greater than 700°C because of the lower stability resulting from the larger number of γ″ particles. The obtained results provide necessary data for the compositional optimization of novel 718-type alloys.

关 键 词:,,,,,
点击此处可从《矿物冶金与材料学报》浏览原始摘要信息
点击此处可从《矿物冶金与材料学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号