首页 | 本学科首页   官方微博 | 高级检索  
     

非线性时滞双曲型偏微分方程解的振动性质
引用本文:罗李平,欧阳自根. 非线性时滞双曲型偏微分方程解的振动性质[J]. 湖南师范大学自然科学学报, 2007, 30(1): 13-16
作者姓名:罗李平  欧阳自根
作者单位:1. 衡阳师范学院数学系,中国,衡阳,421008
2. 南华大学数学系,中国,衡阳,421001
基金项目:国家自然科学基金资助项目(10471086)
摘    要:讨论一类多滞量非线性双曲型偏泛函微分方程解的振动性,利用微分不等式方法和Riccati变换,获得了该类方程在两类不同边值条件下振动的新的充分条件,通过实例对所得结果加以阐明.

关 键 词:非线性  双曲型偏微分方程  时滞  振动  Riccati变换
文章编号:1000-2537(2007)01-0013-04
收稿时间:2006-03-07
修稿时间:2006-03-07

Oscillatory Properties of Solutions for Nonlinear Delay Hyperbolic Partial Differential Equations
LUO Li-ping,OUYANG Zi-gen. Oscillatory Properties of Solutions for Nonlinear Delay Hyperbolic Partial Differential Equations[J]. Journal of Natural Science of Hunan Normal University, 2007, 30(1): 13-16
Authors:LUO Li-ping  OUYANG Zi-gen
Affiliation:1. Department of Mathematics, Hengyang Normal University, Hengyang 421008, China; 2. Department of Mathematics, Nanhua University, Hengyang 421001, China
Abstract:Oscillatory properties of solutions of a class of nonlinear hyperbolic partial functional differential equations with multi-delays are studied and some new sufficient conditions for the oscillation of all solutions of the equations are obtained under two boundary value conditions by using the method of differential inequalities and Riccati transformation.Some examples are given to illustrate the results.
Keywords:nonlinear  hyperbolic partial differential equation  delay  oscillation  Riccati transformation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号