首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrification by plants that also fix nitrogen
Authors:Hipkin Charles R  Simpson Deborah J  Wainwright Stephen J  Salem Mansour A
Affiliation:School of Biological Sciences, University of Wales Swansea, Institute of Environmental Sustainability, Swansea SA2 8PP, UK. c.r.hipkin@swansea.ac.uk
Abstract:Nitrification is a key stage in the nitrogen cycle; it enables the transformation of nitrogen into an oxidized, inorganic state. The availability of nitrates produced by this process often limits primary productivity and is an important determinant in plant community ecology and biodiversity. Chemoautotrophic prokaryotes are recognized as the main facilitators of this process, although heterotrophic nitrification by fungi may be significant under certain conditions. However, there has been neither biochemical nor ecological evidence to support nitrification by photoautotrophic plants. Here we show how certain legumes that accumulate the toxin, 3-nitropropionic acid, generate oxidized inorganic nitrogen in their shoots, which is returned to the soil in their litter. In nitrogen-fixing populations this 'new' nitrate and nitrite can be derived from the assimilation of nitrogen gas. Normally, the transformation of elemental nitrogen from the atmosphere into a fixed oxidized form (as nitrate) is represented in the nitrogen cycle as a multiphasic process involving several different organisms. We show how this can occur in a single photoautotrophic organism, representing a previously undescribed feature of this biogeochemical cycle.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号