首页 | 本学科首页   官方微博 | 高级检索  
     

燃料电池的模糊神经网络辨识建模与电压控制
引用本文:苗青,曹广益,朱新坚. 燃料电池的模糊神经网络辨识建模与电压控制[J]. 上海交通大学学报, 2005, 0(Z1)
作者姓名:苗青  曹广益  朱新坚
作者单位:[1]上海交通大学自动化系燃料电池研究所 [2]上海
基金项目:国家高技术研究发展计划(863)项目(2003AA517020)
摘    要:针对直接甲醇燃料电池(DMFC)输出电压易受电池负载变化影响的问题,提出了利用模糊神经网络辨识技术建立DMFC的电特性模型.基于该辨识模型,设计了一个自适应模糊神经电压控制器,其参数采用改进的BP算法进行在线修正.仿真结果表明,对DMFC采用辨识建模的方法是有效的,建立的模型精度较高,所设计的自适应模糊神经电压控制器性能优越.

关 键 词:直接甲醇燃料电池  模糊神经网络辨识  电压控制器

Fuel Cell Modeling Based on Fuzzy Neural Networks Identification and Its Voltage Control
MIAO Qing,CAO Guang-yi,ZHU Xin-jian. Fuel Cell Modeling Based on Fuzzy Neural Networks Identification and Its Voltage Control[J]. Journal of Shanghai Jiaotong University, 2005, 0(Z1)
Authors:MIAO Qing  CAO Guang-yi  ZHU Xin-jian
Abstract:An electric characteristic model of direct methanol fuel cell (DMFC) was established by using fuzzy neural networks identification technique to cope with the problem that the output voltage of DMFC is significantly influenced by the fuel cell load variation. Based on the identification model, an adaptive fuzzy neural networks voltage controller was designed. The parameters of the controller are regulated by adopting the novel BP algorithm. The simulation results show that the fuzzy neural networks identification modeling method is correct, effective and the model has better accuracy. Moreover, the performance of the designed adaptive fuzzy neural networks voltage controller is very superior.
Keywords:direct methanol fuel cell (DMFC)  fuzzy neural networks identification  voltage controller
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号