首页 | 本学科首页   官方微博 | 高级检索  
     

基于独立分量分析的遥感影像分类方法
引用本文:苏志成 吕宏伟. 基于独立分量分析的遥感影像分类方法[J]. 科学技术与工程, 2007, 7(23): 6244-6247
作者姓名:苏志成 吕宏伟
作者单位:武警工程学院训练部,西安,710086
基金项目:国家自然科学基金重点项目(40335050)资助
摘    要:多光谱遥感影像反映了不同地物的光谱特征,其分类是遥感应用的基础。独立分量分析对未知的源信号的混合信号进行估计,可以获得相互独立的源信号的近似。独立分量分析利用了信号的高阶统计信息,对于多光谱遥感影像而言,其去除了波段影像之间的相关性,获得的波段影像是相互独立的。最后通过TM遥感影像数据的分类试验,验证了基于独立分量分析的线性光谱混合分析模型应用于多光谱遥感影像非监督分类的有效性。

关 键 词:多光谱遥感影像分类  独立分量分析  主成分分析  线形光谱混合模型
文章编号:1671-1819(2007)23-6244-04
修稿时间:2007-08-22

Remote Image Classification Based on Independent Component Analysis
SU Zhi-cheng,LU Hong-wei. Remote Image Classification Based on Independent Component Analysis[J]. Science Technology and Engineering, 2007, 7(23): 6244-6247
Authors:SU Zhi-cheng  LU Hong-wei
Abstract:The multi-spectral remote sensing images reflect the spectral features of diverse surface features, and their classification is the base of remote sensing applications. Independent Component Analysis (ICA) algorithm can estimate the independent source signals that are mixed by unknown mode, and the source signals are unknown, too. The ICA algorithm uses the high-order information of signals; to multi-spectral remote sensing images, ICA algorithm not only removes the correlation of images, but also obtains the new band images that are mutual independent. Experimental results with TM remote sensing images show that a linear spectral random mixture analysis model based on ICA is effective in multi-spectral remote sensing image classification.
Keywords:multi-spectral remote sensing imagery classification independent component analysis principal component analysis linear spectral mixture model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号