首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于自组织特征映射网络的聚类方法
引用本文:陈泯融,邓飞其. 一种基于自组织特征映射网络的聚类方法[J]. 系统工程与电子技术, 2004, 26(12): 1864-1866
作者姓名:陈泯融  邓飞其
作者单位:华南理工大学系统工程研究所,广东,广州,510640
基金项目:国家自然科学基金(60374023),广东省自然科学基金(011629)资助课题
摘    要:针对传统聚类算法不能有效地处理大数据集和高维数据集的问题,提出了一种基于自组织特征映射网络的聚类方法。该方法能将任意维输入模式在输出层映射成一维或二维离散图形,并保持其拓扑结构不变,而且无需监督,能自动对输入模式进行聚类。给出了应用该方法的具体步骤和加速自组织过程的若干改进方法,通过仿真实验证明该算法的有效性。

关 键 词:聚类  数据挖掘  自组织特征映射  拓扑
文章编号:1001-506X(2004)12-1864-03
修稿时间:2003-12-31

Approach of clustering based on self-organizing feature map
CHEN Min-rong,DENG Fei-qi. Approach of clustering based on self-organizing feature map[J]. System Engineering and Electronics, 2004, 26(12): 1864-1866
Authors:CHEN Min-rong  DENG Fei-qi
Abstract:The traditional clustering approaches cann't work effectively when the datasets are huge or high-dimensional. Due to this problem, a clustering approach based on self-organizing feature map is proposed. This approach can project the high-dimensional input space onto one-dimension or two-dimension discrete space. The learning process of clustering doesn't need supervision and it make input space cluster automatically. Furthermore, detailed algorithm steps and some advanced methods to accelerate the self-organizing process are presented. Finally, the experimental result demonstrates the effectiveness of this approach.
Keywords:clustering  data mining  self-organizing feature map  topology
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号