首页 | 本学科首页   官方微博 | 高级检索  
     

电磁轴承支承转子系统的运动稳定性
引用本文:吴园,吕延军,罗凯. 电磁轴承支承转子系统的运动稳定性[J]. 西安石油大学学报(自然科学版), 2006, 21(4): 94-98
作者姓名:吴园  吕延军  罗凯
作者单位:1. 西安工程大学,电子信息学院,陕西,西安,710048
2. 西安理工大学,机械与精密仪器工程学院,陕西,西安,710048
3. 西北工业大学,航海学院,陕西,西安,710072
摘    要:结合定参数PID控制器方程和具有陀螺效应的不对称转子运动方程形成了电磁轴承支承的转子系统的机电耦合动力学方程.将Poincaré映射与Newton打靶法相结合求解了系统非线性不平衡周期响应.结合Floquet分岔理论分析了系统周期运动的稳定性边界和分岔行为.对电磁轴承支承的转子系统设计了变参数PID控制规律,运用所设计的PID控制算法对系统进行计算,发现变参数PID控制算法使得系统非线性周期响应的稳定性有所提高,保证了系统稳定的谐波运动.

关 键 词:电磁轴承  陀螺效应  非线性周期响应  稳定性  分岔
文章编号:1673-064X(2006)04-0094-04
修稿时间:2006-03-16

Motion stability of the rotor system supported by electromagnetic bearings
WU Yuan,Lü Yan-jun,LUO Kai. Motion stability of the rotor system supported by electromagnetic bearings[J]. Journal of Xian Shiyou University, 2006, 21(4): 94-98
Authors:WU Yuan  Lü Yan-jun  LUO Kai
Abstract:The Electromechanical coupling dynamic equations of the rotor system supported by electromagnetic bearings are obtained by combining the equations of the PID controllers with invariable parameters and the motion equations of the un-symmetric rotor with gyro effect.The nonlinear unbalance periodic responses of the system are solved by Poincaré mapping together with Newton shooting method.The stability margins of the nonlinear periodic motions and their bifurcation types are obtained according to Floquet bifurcation theory. The variable parameter PID control algorithm is designed for the system.The motion simulation of the system is implemented by using the designed PID algorithm.The numerical examples show that the designed PID algorithm greatly increases the stability of the nonlinear periodic motions and ensures the stable harmonic motions of the system.
Keywords:electromagnetic bearing  Gyro effect  nonlinear periodic response  stability  bifurcation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号