首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进智能水滴算法的动态车辆配送路径优化
引用本文:范双南,陈纪铭,高为民,王增凤. 基于改进智能水滴算法的动态车辆配送路径优化[J]. 系统仿真学报, 2020, 32(9): 1808-1817. DOI: 10.16182/j.issn1004731x.joss.19-0374
作者姓名:范双南  陈纪铭  高为民  王增凤
作者单位:1.湖南交通工程学院电气与信息工程学院,湖南 衡阳 421009; 2.湖南工学院计算机与信息科学学院,湖南 衡阳 421002
基金项目:湖南省教育厅科学研究重点课题(16A063)
摘    要:针对当前车辆配送过程中存在的配送路径不合理、配送效率低和需求不确定性等问题,提出一种基于改进智能水滴算法的动态车辆配送路径优化方法。构建软时间窗惩罚函数,考虑顾客对配送时间的要求,建立顾客满意度函数。综合车辆配送过程的车速、货损成本、惩罚成本、顾客满意度等特征,建立车辆路径优化模型。采用智能水滴算法对车辆路径优化模型进行求解,使用灰狼优化算法改善智能水滴算法的搜索能力,获取最优路径。实验结果表明该方法能够提供实时优化的路径,减少调配成本。

关 键 词:动态车辆路径优化  配送时效  智能水滴算法  灰狼优化  
收稿时间:2019-07-24

Dynamic Vehicle Distribution Path Optimization Based on Improved Intelligent Water Drop Algorithm
Fan Shuangnan,Chen Jiming,Gao Weimin,Wang Zengfeng. Dynamic Vehicle Distribution Path Optimization Based on Improved Intelligent Water Drop Algorithm[J]. Journal of System Simulation, 2020, 32(9): 1808-1817. DOI: 10.16182/j.issn1004731x.joss.19-0374
Authors:Fan Shuangnan  Chen Jiming  Gao Weimin  Wang Zengfeng
Affiliation:1. Department of electrical and Information Engineering, Hunan Institute of Traffic Engineering, Hengyang 421009, China; 2. School of Computer and Information Science, Hunan Institute of Technology, Hengyang 421002, China
Abstract:In view of the unreasonable distribution path, low distribution efficiency and demand uncertainty in the current vehicle distribution process, a dynamic vehicle distribution path optimization method based on the improved intelligent drop algorithm is proposed. According to the customer's demand for delivery time, the soft time window penalty function and customer satisfaction function are constructed. Based on the characteristics of vehicle speed, damage cost, penalty cost and customer satisfaction of vehicle distribution, a vehicle path optimization model is established. The vehicle path optimization model is solved by the intelligent water droplet algorithm. The grey wolf optimization algorithm is used to improve the search ability of the intelligent water droplet algorithm to obtain optimization path. Experiment results show that the method can provide the real-time optimization path and reduce the allocation cost.
Keywords:dynamic vehicle path optimization  delivery time  intelligent water droplet algorithm  gray wolf optimization  
点击此处可从《系统仿真学报》浏览原始摘要信息
点击此处可从《系统仿真学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号