首页 | 本学科首页   官方微博 | 高级检索  
     

A cumulant-based parameter estimation algorithm for near-field sources
引用本文:Liang Junli,Yang Shuyuan and Zhang Junying. A cumulant-based parameter estimation algorithm for near-field sources[J]. 自然科学进展(英文版), 2007, 17(8): 900-905
作者姓名:Liang Junli  Yang Shuyuan and Zhang Junying
作者单位:Liang Junli~(1,2*) Yang Shuyuan~(1,2) Zhang Junying~3 (1.Institute of Acoustics,Chinese Academy of Sciences,Beijing 100080,China;2.Graduate School,Chinese Academy of Sciences,Beijing 100039,China;3.National Laboratory of Radar Signal Processing,Xidian University,Xi'an 710071,China)
摘    要:To efficiently use the array aperture and avoid the complicated parameter pairing computation,this paper proposes a new cumulant-based algorithm for localizing near-field narrowband sources.Firstly,this algorithm proposes a symmetric uniform linear ar- ray (ULA),and constructs three cumulant matrices by using the fourth-order cumulants of some properly chosen sensor outputs;second- ly,unlike the conventional parallel factor (PARAFAC) analysis models in data or subspace domain,it forms a three-way array (TWA) in the fourth-order cumulant domain using the three matrices,and analyzes the uniqueness of its low-rank decomposition;thirdly,it jointly estimates the frequency,the direction-of-arrival (DOA),and the range of each near-field source from the matrices via the low-rank de- composition of the TWA.The simulation results are presented to validate the performance of our proposed method.


A cumulant-based parameter estimation algorithm for near-field sources
Liang Junli,Yang Shuyuan,Zhang Junying. A cumulant-based parameter estimation algorithm for near-field sources[J]. Progress in Natural Science, 2007, 17(8): 900-905
Authors:Liang Junli  Yang Shuyuan  Zhang Junying
Abstract:To efficiently use the array aperture and avoid the complicated parameter pairing computation,this paper proposes a new cumulant-based algorithm for localizing near-field narrowband sources.Firstly,this algorithm proposes a symmetric uniform linear ar- ray (ULA),and constructs three cumulant matrices by using the fourth-order cumulants of some properly chosen sensor outputs;second- ly,unlike the conventional parallel factor (PARAFAC) analysis models in data or subspace domain,it forms a three-way array (TWA) in the fourth-order cumulant domain using the three matrices,and analyzes the uniqueness of its low-rank decomposition;thirdly,it jointly estimates the frequency,the direction-of-arrival (DOA),and the range of each near-field source from the matrices via the low-rank de- composition of the TWA.The simulation results are presented to validate the performance of our proposed method.
Keywords:array signal processing  localization  cumulant  parallel factor (PARAFAC) analysis  three-way array (TWA)
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号