首页 | 本学科首页   官方微博 | 高级检索  
     

一种MIMO复杂过程的模糊建模新方法
引用本文:朱文彪,孙增圻. 一种MIMO复杂过程的模糊建模新方法[J]. 系统工程与电子技术, 2005, 27(1): 97-99
作者姓名:朱文彪  孙增圻
作者单位:1. 中国航天科工集团第四总体设计部,北京,100854
2. 清华大学计算机系,北京,100084
摘    要:针对难于建立精确数学模型的MIMO复杂过程,提出一种基于过程输入输出数据变化关系的模糊建模方法。即首先将一个MIMO系统分解成多个MISO子系统,对每一个MISO子系统按过程输出随输入变量变化的剧烈程度对输入变量论域进行划分。在此划分的基础上确定出MIMO复杂过程模糊模型的规则总数和前件参数;然后,由于要建立的模糊模型可以表示为一个前馈模糊神经网络,因此利用BP学习算法求得过程模型模型的后件参数。仿真举例验证了所述模糊建模方法的有效性。

关 键 词:复杂过程  模糊建模  模糊模型  模糊神经网络
文章编号:1001-506X(2005)01-0097-03
修稿时间:2003-10-11

Novel fuzzy modeling method for MIMO complex processes
ZHU Wen-biao,SUN Zeng-qi. Novel fuzzy modeling method for MIMO complex processes[J]. System Engineering and Electronics, 2005, 27(1): 97-99
Authors:ZHU Wen-biao  SUN Zeng-qi
Affiliation:ZHU Wen-biao~1,SUN Zeng-qi~2
Abstract:A fuzzy modeling method based on the change relationship between process input and output data is presented for MIMO complex processes which are difficult to be mathematically modeled, that is, firstly an MIMO.system is decomposed into MISO subsystems. For each MISO subsystem the domain of discourse of input variables is divided according to the changing degree of the process output while the input variables change, then, based on the above division,the total number and premise parameters of the fuzzy model of the MIMO complex process are dctermined. (Finally), because the fuzzy model could be expressed as a feed forward fuzzy neural nelwork,the BP algoritynl is applied to obtain the conesquent parameters of the fuzzy model. The effectiveness of the presented fuzzy modeling method is demostrated by a simulation example.
Keywords:Complex processes  fuzzy modeling  fuzzy model  fuzzy neural network
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号