首页 | 本学科首页   官方微博 | 高级检索  
     

一类含有临界Sobolev-Hardy项的四阶奇异椭圆方程无穷多小解的存在性
引用本文:黄红. 一类含有临界Sobolev-Hardy项的四阶奇异椭圆方程无穷多小解的存在性[J]. 南京大学学报(自然科学版), 2016, 0(2): 137-151. DOI: 10.3969/j.issn.0469-5097.2016.02.003
作者姓名:黄红
作者单位:南京师范大学中北学院,南京,210023
摘    要:本文研究了一类含有临界Sobolev-Hardy项的四阶奇异椭圆方程问题△2u=μ |u|2**(s)-2u/|x|s +λf(x,u),x∈Ω,u∈H2,2(Ω),N(>)5.利用变分方法和集中紧性原理,证明了该四阶奇异椭圆方程问题无穷多小解的存在性.

关 键 词:双调和算子  临界Sobolev-Hardy项  变分方法  紧性

EXISTENCE OF INFINITELY MANY SMALL SOLUTIONS FOR A CLASS OF FOURTH ORDER SINGULAR ELLIPTIC PROBLEM WITH CRITICAL SOBOLEV AND HARDY TERMS
Abstract:We investigate a class of fourth order elliptic problem which is singular potential and involves critical Sobolev and Hardy terms.△2u=μ |u|2**(s)-2u/|x|s +λf(x,u),x∈Ω,u∈H2,2(Ω),N(>)5.=Employing the variational method and concentration-compactness principle,the existence of its infinitely many small solutions is proved,and the properties of its solutions are verified.
Keywords:Biharmonic operator  critical Sobolev and Hardy exponent  variational method  compactness
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号