一类含有临界Sobolev-Hardy项的四阶奇异椭圆方程无穷多小解的存在性 |
| |
引用本文: | 黄红. 一类含有临界Sobolev-Hardy项的四阶奇异椭圆方程无穷多小解的存在性[J]. 南京大学学报(自然科学版), 2016, 0(2): 137-151. DOI: 10.3969/j.issn.0469-5097.2016.02.003 |
| |
作者姓名: | 黄红 |
| |
作者单位: | 南京师范大学中北学院,南京,210023 |
| |
摘 要: | 本文研究了一类含有临界Sobolev-Hardy项的四阶奇异椭圆方程问题△2u=μ |u|2**(s)-2u/|x|s +λf(x,u),x∈Ω,u∈H2,2(Ω),N(>)5.利用变分方法和集中紧性原理,证明了该四阶奇异椭圆方程问题无穷多小解的存在性.
|
关 键 词: | 双调和算子 临界Sobolev-Hardy项 变分方法 紧性 |
EXISTENCE OF INFINITELY MANY SMALL SOLUTIONS FOR A CLASS OF FOURTH ORDER SINGULAR ELLIPTIC PROBLEM WITH CRITICAL SOBOLEV AND HARDY TERMS |
| |
Abstract: | We investigate a class of fourth order elliptic problem which is singular potential and involves critical Sobolev and Hardy terms.△2u=μ |u|2**(s)-2u/|x|s +λf(x,u),x∈Ω,u∈H2,2(Ω),N(>)5.=Employing the variational method and concentration-compactness principle,the existence of its infinitely many small solutions is proved,and the properties of its solutions are verified. |
| |
Keywords: | Biharmonic operator critical Sobolev and Hardy exponent variational method compactness |
本文献已被 万方数据 等数据库收录! |
|