首页 | 本学科首页   官方微博 | 高级检索  
     

逆P-集合的扰动定理与数据的扰动挖掘
引用本文:任雪芳,张凌. 逆P-集合的扰动定理与数据的扰动挖掘[J]. 山东大学学报(理学版), 2016, 51(12): 54-60. DOI: 10.6040/j.issn.1671-9352.0.2016.375
作者姓名:任雪芳  张凌
作者单位:龙岩学院信息工程学院, 福建 龙岩 364012
基金项目:福建省中青年教师教育科研项目(JA15495,JA15503);龙岩学院重点学科资助项目;龙岩学院协同创新资助项目
摘    要:逆P-集合是把动态特征引入到有限普通元素集合内提出的,逆P-集合具有动态特征。逆P-集合的动态特征来自集合的元素(属性)迁移,元素迁入使得集合的边界发生扩展扰动,元素迁出使得集合的边界发生收缩扰动。本文基于逆P-集合的概念与结构,提出内逆P-集合的F-扰动度、外逆P-集合的(-overF)-扰动度与逆P-集合的(F,(-overF))-扰动度概念,给出它们的度量,并给出F-扰动定理、(-overF)-扰动定理与(F,(-overF))-扰动定理,以及在扰动存在的条件下,逆P-集合、逆P-集合族与有限普通元素集合X的关系利用这些结果,提出数据的F-扰动挖掘定理、(-overF)-扰动挖掘定理与(F,(-overF))-扰动挖掘定理。最后给出基于扰动度的数据挖掘应用。

关 键 词:扰动定理  扰动度  边界  数据的扰动挖掘定理  逆P-集合  
收稿时间:2016-07-31

Perturbation theorems of inverse P-sets and perturbation-based data mining
REN Xue-fang,ZHANG Ling. Perturbation theorems of inverse P-sets and perturbation-based data mining[J]. Journal of Shandong University, 2016, 51(12): 54-60. DOI: 10.6040/j.issn.1671-9352.0.2016.375
Authors:REN Xue-fang  ZHANG Ling
Affiliation:School of Information Engineering, Longyan University, Longyan 364012, Fujian, China
Abstract:Inverse P-sets were proposed by introducing dynamic characteristics into finite ordinary element set; inverse P-sets have dynamic characteristics, which characteristics come from element(attribute)transferring. Elements transferred into set make the boundary of the set expanding, while elements transferred from the set makes the boundary of the set contracting. Based on inverse P-sets, this paper proposes F-perturbation degree of internal inverse P-set, (-overF)-perturbation degree of outer inverse P-set and(F,(-overF))-perturbation degree of inverse P-set, and gives their measurements. Then this paper gives F-perturbation theorem, (-overF)-perturbation theorem and (F,(-overF))-perturbation theorem, and shows the relationships anong inverse P-sets, inverse P-sets faminly and finite ordinary element set under perturbations. By using the aforementioned results, F-perturbation based data mining theorem, (-overF)-perturbation based data mining theorem and (F,(-overF))-perturbation based data mining theorem are presented. Finally an application of data mining based on perturbation degree is shown.
Keywords:perturbation-based data mining theorems  perturbation degrees  boundary  inverse P-sets  perturbation theorems  
本文献已被 CNKI 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号