首页 | 本学科首页   官方微博 | 高级检索  
     

识别混凝土板内部缺陷的人工神经网络算法
引用本文:王婷,赵鸣,李杰. 识别混凝土板内部缺陷的人工神经网络算法[J]. 同济大学学报(自然科学版), 2007, 35(3): 304-308
作者姓名:王婷  赵鸣  李杰
作者单位:同济大学,建筑工程系,上海,200092
基金项目:国家自然科学基金;土木工程防灾国家创新研究群体资助项目
摘    要:以一维有缺陷混凝土板为研究对象,分别采用Leverberg-Marcluardt和径向基神经网络算法,对缺陷的深度与厚度进行识别,从而实现对混凝土板内部缺陷的三维重构,称为红外CT模拟.两类神经网络算法的识别结果表明:Leverberg-Marcluardt神经网络较径向基神经网络具有更好的收敛精度与计算效率.

关 键 词:结构检测  红外成像  红外CT模拟  神经网络
文章编号:0253-374X(2007)03-0304-05
修稿时间:2005-06-27

Identifying Interior Damage of Concrete Slabs Based on Artificial Neural Network
WANG Ting,ZHAO Ming,LI Jie. Identifying Interior Damage of Concrete Slabs Based on Artificial Neural Network[J]. Journal of Tongji University(Natural Science), 2007, 35(3): 304-308
Authors:WANG Ting  ZHAO Ming  LI Jie
Affiliation:Department of Building Engineering, Tongji University, Shanghai 200092,China
Abstract:Two kinds of algorithms, including Leverberg-Marquardt and Radial Basis Function neural network, are utilized to identify the depth and thickness of defect to realize three dimensional reconstruction of defects of concrete slabs, which is called infrared CT. In addition, a comparison of the two algorithms in identifying the depth and thickness of defect shows that. Leverberg-Marquardt neural network is precisie in convergence and efficient in computation.
Keywords:structural detection   infrared thermography   infrared CT simulation   neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号